This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc . See prstchom2 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | ||
| prstchom.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) | ||
| prstchom.e | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | ||
| Assertion | prstchom2ALT | ⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| 2 | prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | |
| 3 | prstchom.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) | |
| 4 | prstchom.e | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | |
| 5 | ovex | ⊢ ( 𝑋 𝐻 𝑌 ) ∈ V | |
| 6 | 1 2 3 | prstchomval | ⊢ ( 𝜑 → ( ≤ × { 1o } ) = ( Hom ‘ 𝐶 ) ) |
| 7 | 4 6 | eqtr4d | ⊢ ( 𝜑 → 𝐻 = ( ≤ × { 1o } ) ) |
| 8 | 1oex | ⊢ 1o ∈ V | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → 1o ∈ V ) |
| 10 | 1n0 | ⊢ 1o ≠ ∅ | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 1o ≠ ∅ ) |
| 12 | 7 9 11 | fvconstr | ⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) = 1o ) ) |
| 13 | 12 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 𝐻 𝑌 ) = 1o ) |
| 14 | eqeng | ⊢ ( ( 𝑋 𝐻 𝑌 ) ∈ V → ( ( 𝑋 𝐻 𝑌 ) = 1o → ( 𝑋 𝐻 𝑌 ) ≈ 1o ) ) | |
| 15 | 5 13 14 | mpsyl | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 𝐻 𝑌 ) ≈ 1o ) |
| 16 | euen1b | ⊢ ( ( 𝑋 𝐻 𝑌 ) ≈ 1o ↔ ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 17 | 15 16 | sylib | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 18 | euex | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 19 | n0 | ⊢ ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 20 | 18 19 | sylibr | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) |
| 21 | 7 9 11 | fvconstrn0 | ⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) |
| 22 | 21 | biimpar | ⊢ ( ( 𝜑 ∧ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) → 𝑋 ≤ 𝑌 ) |
| 23 | 20 22 | sylan2 | ⊢ ( ( 𝜑 ∧ ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑋 ≤ 𝑌 ) |
| 24 | 17 23 | impbida | ⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |