This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prodrb . (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| prodrb.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| Assertion | prodrblem | |- ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) = seq N ( x. , F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| 2 | prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | prodrb.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 4 | mullid | |- ( n e. CC -> ( 1 x. n ) = n ) |
|
| 5 | 4 | adantl | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. CC ) -> ( 1 x. n ) = n ) |
| 6 | 1cnd | |- ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> 1 e. CC ) |
|
| 7 | 3 | adantr | |- ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> N e. ( ZZ>= ` M ) ) |
| 8 | iftrue | |- ( k e. A -> if ( k e. A , B , 1 ) = B ) |
|
| 9 | 8 | adantl | |- ( ( ( ph /\ k e. ZZ ) /\ k e. A ) -> if ( k e. A , B , 1 ) = B ) |
| 10 | 2 | adantlr | |- ( ( ( ph /\ k e. ZZ ) /\ k e. A ) -> B e. CC ) |
| 11 | 9 10 | eqeltrd | |- ( ( ( ph /\ k e. ZZ ) /\ k e. A ) -> if ( k e. A , B , 1 ) e. CC ) |
| 12 | 11 | ex | |- ( ( ph /\ k e. ZZ ) -> ( k e. A -> if ( k e. A , B , 1 ) e. CC ) ) |
| 13 | iffalse | |- ( -. k e. A -> if ( k e. A , B , 1 ) = 1 ) |
|
| 14 | ax-1cn | |- 1 e. CC |
|
| 15 | 13 14 | eqeltrdi | |- ( -. k e. A -> if ( k e. A , B , 1 ) e. CC ) |
| 16 | 12 15 | pm2.61d1 | |- ( ( ph /\ k e. ZZ ) -> if ( k e. A , B , 1 ) e. CC ) |
| 17 | 16 1 | fmptd | |- ( ph -> F : ZZ --> CC ) |
| 18 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 19 | 18 3 | sselid | |- ( ph -> N e. ZZ ) |
| 20 | 17 19 | ffvelcdmd | |- ( ph -> ( F ` N ) e. CC ) |
| 21 | 20 | adantr | |- ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> ( F ` N ) e. CC ) |
| 22 | elfzelz | |- ( n e. ( M ... ( N - 1 ) ) -> n e. ZZ ) |
|
| 23 | 22 | adantl | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> n e. ZZ ) |
| 24 | simplr | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> A C_ ( ZZ>= ` N ) ) |
|
| 25 | 19 | zcnd | |- ( ph -> N e. CC ) |
| 26 | 25 | adantr | |- ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> N e. CC ) |
| 27 | 26 | adantr | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> N e. CC ) |
| 28 | 1cnd | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> 1 e. CC ) |
|
| 29 | 27 28 | npcand | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 30 | 29 | fveq2d | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) = ( ZZ>= ` N ) ) |
| 31 | 24 30 | sseqtrrd | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> A C_ ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
| 32 | fznuz | |- ( n e. ( M ... ( N - 1 ) ) -> -. n e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
|
| 33 | 32 | adantl | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> -. n e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
| 34 | 31 33 | ssneldd | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> -. n e. A ) |
| 35 | 23 34 | eldifd | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> n e. ( ZZ \ A ) ) |
| 36 | fveqeq2 | |- ( k = n -> ( ( F ` k ) = 1 <-> ( F ` n ) = 1 ) ) |
|
| 37 | eldifi | |- ( k e. ( ZZ \ A ) -> k e. ZZ ) |
|
| 38 | eldifn | |- ( k e. ( ZZ \ A ) -> -. k e. A ) |
|
| 39 | 38 13 | syl | |- ( k e. ( ZZ \ A ) -> if ( k e. A , B , 1 ) = 1 ) |
| 40 | 39 14 | eqeltrdi | |- ( k e. ( ZZ \ A ) -> if ( k e. A , B , 1 ) e. CC ) |
| 41 | 1 | fvmpt2 | |- ( ( k e. ZZ /\ if ( k e. A , B , 1 ) e. CC ) -> ( F ` k ) = if ( k e. A , B , 1 ) ) |
| 42 | 37 40 41 | syl2anc | |- ( k e. ( ZZ \ A ) -> ( F ` k ) = if ( k e. A , B , 1 ) ) |
| 43 | 42 39 | eqtrd | |- ( k e. ( ZZ \ A ) -> ( F ` k ) = 1 ) |
| 44 | 36 43 | vtoclga | |- ( n e. ( ZZ \ A ) -> ( F ` n ) = 1 ) |
| 45 | 35 44 | syl | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> ( F ` n ) = 1 ) |
| 46 | 5 6 7 21 45 | seqid | |- ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) = seq N ( x. , F ) ) |