This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prodrb . (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| prodrb.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| prodrb.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| prodrb.6 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | ||
| prodrb.7 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) | ||
| Assertion | prodrblem2 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| 2 | prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | prodrb.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | prodrb.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 5 | prodrb.6 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | prodrb.7 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) | |
| 7 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℤ ) |
| 8 | seqex | ⊢ seq 𝑀 ( · , 𝐹 ) ∈ V | |
| 9 | climres | ⊢ ( ( 𝑁 ∈ ℤ ∧ seq 𝑀 ( · , 𝐹 ) ∈ V ) → ( ( seq 𝑀 ( · , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) ⇝ 𝐶 ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ) ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) ⇝ 𝐶 ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ) ) |
| 11 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 13 | 1 11 12 | prodrblem | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) = seq 𝑁 ( · , 𝐹 ) ) |
| 14 | 6 13 | mpidan | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( · , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) = seq 𝑁 ( · , 𝐹 ) ) |
| 15 | 14 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) ) |
| 16 | 10 15 | bitr3d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) ) |