This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prodrb . (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| prodrb.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| Assertion | prodrblem | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) = seq 𝑁 ( · , 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| 2 | prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | prodrb.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | mullid | ⊢ ( 𝑛 ∈ ℂ → ( 1 · 𝑛 ) = 𝑛 ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ℂ ) → ( 1 · 𝑛 ) = 𝑛 ) |
| 6 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → 1 ∈ ℂ ) | |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | iftrue | ⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 𝐵 ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 𝐵 ) |
| 10 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 11 | 9 10 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
| 12 | 11 | ex | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) ) |
| 13 | iffalse | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 1 ) | |
| 14 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 15 | 13 14 | eqeltrdi | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
| 16 | 12 15 | pm2.61d1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
| 17 | 16 1 | fmptd | ⊢ ( 𝜑 → 𝐹 : ℤ ⟶ ℂ ) |
| 18 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 19 | 18 3 | sselid | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 20 | 17 19 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℂ ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) ∈ ℂ ) |
| 22 | elfzelz | ⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℤ ) | |
| 23 | 22 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ℤ ) |
| 24 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) | |
| 25 | 19 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℂ ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ℂ ) |
| 28 | 1cnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 1 ∈ ℂ ) | |
| 29 | 27 28 | npcand | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 30 | 29 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 31 | 24 30 | sseqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 32 | fznuz | ⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → ¬ 𝑛 ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) | |
| 33 | 32 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ¬ 𝑛 ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 34 | 31 33 | ssneldd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ¬ 𝑛 ∈ 𝐴 ) |
| 35 | 23 34 | eldifd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( ℤ ∖ 𝐴 ) ) |
| 36 | fveqeq2 | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) = 1 ↔ ( 𝐹 ‘ 𝑛 ) = 1 ) ) | |
| 37 | eldifi | ⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → 𝑘 ∈ ℤ ) | |
| 38 | eldifn | ⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ¬ 𝑘 ∈ 𝐴 ) | |
| 39 | 38 13 | syl | ⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 1 ) |
| 40 | 39 14 | eqeltrdi | ⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
| 41 | 1 | fvmpt2 | ⊢ ( ( 𝑘 ∈ ℤ ∧ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
| 42 | 37 40 41 | syl2anc | ⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
| 43 | 42 39 | eqtrd | ⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = 1 ) |
| 44 | 36 43 | vtoclga | ⊢ ( 𝑛 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑛 ) = 1 ) |
| 45 | 35 44 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) = 1 ) |
| 46 | 5 6 7 21 45 | seqid | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) = seq 𝑁 ( · , 𝐹 ) ) |