This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No term of a nonzero infinite product is zero. (Contributed by Scott Fenton, 14-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodfn0.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| prodfn0.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
||
| prodfn0.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) =/= 0 ) |
||
| Assertion | prodfn0 | |- ( ph -> ( seq M ( x. , F ) ` N ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodfn0.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | prodfn0.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
|
| 3 | prodfn0.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) =/= 0 ) |
|
| 4 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 5 | 1 4 | syl | |- ( ph -> N e. ( M ... N ) ) |
| 6 | fveq2 | |- ( m = M -> ( seq M ( x. , F ) ` m ) = ( seq M ( x. , F ) ` M ) ) |
|
| 7 | 6 | neeq1d | |- ( m = M -> ( ( seq M ( x. , F ) ` m ) =/= 0 <-> ( seq M ( x. , F ) ` M ) =/= 0 ) ) |
| 8 | 7 | imbi2d | |- ( m = M -> ( ( ph -> ( seq M ( x. , F ) ` m ) =/= 0 ) <-> ( ph -> ( seq M ( x. , F ) ` M ) =/= 0 ) ) ) |
| 9 | fveq2 | |- ( m = n -> ( seq M ( x. , F ) ` m ) = ( seq M ( x. , F ) ` n ) ) |
|
| 10 | 9 | neeq1d | |- ( m = n -> ( ( seq M ( x. , F ) ` m ) =/= 0 <-> ( seq M ( x. , F ) ` n ) =/= 0 ) ) |
| 11 | 10 | imbi2d | |- ( m = n -> ( ( ph -> ( seq M ( x. , F ) ` m ) =/= 0 ) <-> ( ph -> ( seq M ( x. , F ) ` n ) =/= 0 ) ) ) |
| 12 | fveq2 | |- ( m = ( n + 1 ) -> ( seq M ( x. , F ) ` m ) = ( seq M ( x. , F ) ` ( n + 1 ) ) ) |
|
| 13 | 12 | neeq1d | |- ( m = ( n + 1 ) -> ( ( seq M ( x. , F ) ` m ) =/= 0 <-> ( seq M ( x. , F ) ` ( n + 1 ) ) =/= 0 ) ) |
| 14 | 13 | imbi2d | |- ( m = ( n + 1 ) -> ( ( ph -> ( seq M ( x. , F ) ` m ) =/= 0 ) <-> ( ph -> ( seq M ( x. , F ) ` ( n + 1 ) ) =/= 0 ) ) ) |
| 15 | fveq2 | |- ( m = N -> ( seq M ( x. , F ) ` m ) = ( seq M ( x. , F ) ` N ) ) |
|
| 16 | 15 | neeq1d | |- ( m = N -> ( ( seq M ( x. , F ) ` m ) =/= 0 <-> ( seq M ( x. , F ) ` N ) =/= 0 ) ) |
| 17 | 16 | imbi2d | |- ( m = N -> ( ( ph -> ( seq M ( x. , F ) ` m ) =/= 0 ) <-> ( ph -> ( seq M ( x. , F ) ` N ) =/= 0 ) ) ) |
| 18 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 19 | elfzelz | |- ( M e. ( M ... N ) -> M e. ZZ ) |
|
| 20 | 19 | adantl | |- ( ( ph /\ M e. ( M ... N ) ) -> M e. ZZ ) |
| 21 | seq1 | |- ( M e. ZZ -> ( seq M ( x. , F ) ` M ) = ( F ` M ) ) |
|
| 22 | 20 21 | syl | |- ( ( ph /\ M e. ( M ... N ) ) -> ( seq M ( x. , F ) ` M ) = ( F ` M ) ) |
| 23 | fveq2 | |- ( k = M -> ( F ` k ) = ( F ` M ) ) |
|
| 24 | 23 | neeq1d | |- ( k = M -> ( ( F ` k ) =/= 0 <-> ( F ` M ) =/= 0 ) ) |
| 25 | 24 | imbi2d | |- ( k = M -> ( ( ph -> ( F ` k ) =/= 0 ) <-> ( ph -> ( F ` M ) =/= 0 ) ) ) |
| 26 | 3 | expcom | |- ( k e. ( M ... N ) -> ( ph -> ( F ` k ) =/= 0 ) ) |
| 27 | 25 26 | vtoclga | |- ( M e. ( M ... N ) -> ( ph -> ( F ` M ) =/= 0 ) ) |
| 28 | 27 | impcom | |- ( ( ph /\ M e. ( M ... N ) ) -> ( F ` M ) =/= 0 ) |
| 29 | 22 28 | eqnetrd | |- ( ( ph /\ M e. ( M ... N ) ) -> ( seq M ( x. , F ) ` M ) =/= 0 ) |
| 30 | 29 | expcom | |- ( M e. ( M ... N ) -> ( ph -> ( seq M ( x. , F ) ` M ) =/= 0 ) ) |
| 31 | 18 30 | syl | |- ( N e. ( ZZ>= ` M ) -> ( ph -> ( seq M ( x. , F ) ` M ) =/= 0 ) ) |
| 32 | elfzouz | |- ( n e. ( M ..^ N ) -> n e. ( ZZ>= ` M ) ) |
|
| 33 | 32 | 3ad2ant2 | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> n e. ( ZZ>= ` M ) ) |
| 34 | seqp1 | |- ( n e. ( ZZ>= ` M ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
|
| 35 | 33 34 | syl | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 36 | elfzofz | |- ( n e. ( M ..^ N ) -> n e. ( M ... N ) ) |
|
| 37 | elfzuz | |- ( n e. ( M ... N ) -> n e. ( ZZ>= ` M ) ) |
|
| 38 | 37 | adantl | |- ( ( ph /\ n e. ( M ... N ) ) -> n e. ( ZZ>= ` M ) ) |
| 39 | elfzuz3 | |- ( n e. ( M ... N ) -> N e. ( ZZ>= ` n ) ) |
|
| 40 | fzss2 | |- ( N e. ( ZZ>= ` n ) -> ( M ... n ) C_ ( M ... N ) ) |
|
| 41 | 39 40 | syl | |- ( n e. ( M ... N ) -> ( M ... n ) C_ ( M ... N ) ) |
| 42 | 41 | sselda | |- ( ( n e. ( M ... N ) /\ k e. ( M ... n ) ) -> k e. ( M ... N ) ) |
| 43 | 42 2 | sylan2 | |- ( ( ph /\ ( n e. ( M ... N ) /\ k e. ( M ... n ) ) ) -> ( F ` k ) e. CC ) |
| 44 | 43 | anassrs | |- ( ( ( ph /\ n e. ( M ... N ) ) /\ k e. ( M ... n ) ) -> ( F ` k ) e. CC ) |
| 45 | mulcl | |- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) |
|
| 46 | 45 | adantl | |- ( ( ( ph /\ n e. ( M ... N ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
| 47 | 38 44 46 | seqcl | |- ( ( ph /\ n e. ( M ... N ) ) -> ( seq M ( x. , F ) ` n ) e. CC ) |
| 48 | 36 47 | sylan2 | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( seq M ( x. , F ) ` n ) e. CC ) |
| 49 | 48 | 3adant3 | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( seq M ( x. , F ) ` n ) e. CC ) |
| 50 | fzofzp1 | |- ( n e. ( M ..^ N ) -> ( n + 1 ) e. ( M ... N ) ) |
|
| 51 | fveq2 | |- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
|
| 52 | 51 | eleq1d | |- ( k = ( n + 1 ) -> ( ( F ` k ) e. CC <-> ( F ` ( n + 1 ) ) e. CC ) ) |
| 53 | 52 | imbi2d | |- ( k = ( n + 1 ) -> ( ( ph -> ( F ` k ) e. CC ) <-> ( ph -> ( F ` ( n + 1 ) ) e. CC ) ) ) |
| 54 | 2 | expcom | |- ( k e. ( M ... N ) -> ( ph -> ( F ` k ) e. CC ) ) |
| 55 | 53 54 | vtoclga | |- ( ( n + 1 ) e. ( M ... N ) -> ( ph -> ( F ` ( n + 1 ) ) e. CC ) ) |
| 56 | 50 55 | syl | |- ( n e. ( M ..^ N ) -> ( ph -> ( F ` ( n + 1 ) ) e. CC ) ) |
| 57 | 56 | impcom | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( F ` ( n + 1 ) ) e. CC ) |
| 58 | 57 | 3adant3 | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( F ` ( n + 1 ) ) e. CC ) |
| 59 | simp3 | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( seq M ( x. , F ) ` n ) =/= 0 ) |
|
| 60 | 51 | neeq1d | |- ( k = ( n + 1 ) -> ( ( F ` k ) =/= 0 <-> ( F ` ( n + 1 ) ) =/= 0 ) ) |
| 61 | 60 | imbi2d | |- ( k = ( n + 1 ) -> ( ( ph -> ( F ` k ) =/= 0 ) <-> ( ph -> ( F ` ( n + 1 ) ) =/= 0 ) ) ) |
| 62 | 61 26 | vtoclga | |- ( ( n + 1 ) e. ( M ... N ) -> ( ph -> ( F ` ( n + 1 ) ) =/= 0 ) ) |
| 63 | 62 | impcom | |- ( ( ph /\ ( n + 1 ) e. ( M ... N ) ) -> ( F ` ( n + 1 ) ) =/= 0 ) |
| 64 | 50 63 | sylan2 | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( F ` ( n + 1 ) ) =/= 0 ) |
| 65 | 64 | 3adant3 | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( F ` ( n + 1 ) ) =/= 0 ) |
| 66 | 49 58 59 65 | mulne0d | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) =/= 0 ) |
| 67 | 35 66 | eqnetrd | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) =/= 0 ) |
| 68 | 67 | 3exp | |- ( ph -> ( n e. ( M ..^ N ) -> ( ( seq M ( x. , F ) ` n ) =/= 0 -> ( seq M ( x. , F ) ` ( n + 1 ) ) =/= 0 ) ) ) |
| 69 | 68 | com12 | |- ( n e. ( M ..^ N ) -> ( ph -> ( ( seq M ( x. , F ) ` n ) =/= 0 -> ( seq M ( x. , F ) ` ( n + 1 ) ) =/= 0 ) ) ) |
| 70 | 69 | a2d | |- ( n e. ( M ..^ N ) -> ( ( ph -> ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( ph -> ( seq M ( x. , F ) ` ( n + 1 ) ) =/= 0 ) ) ) |
| 71 | 8 11 14 17 31 70 | fzind2 | |- ( N e. ( M ... N ) -> ( ph -> ( seq M ( x. , F ) ` N ) =/= 0 ) ) |
| 72 | 5 71 | mpcom | |- ( ph -> ( seq M ( x. , F ) ` N ) =/= 0 ) |