This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodfdiv.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| prodfdiv.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
||
| prodfdiv.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) |
||
| prodfdiv.4 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) =/= 0 ) |
||
| prodfdiv.5 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) / ( G ` k ) ) ) |
||
| Assertion | prodfdiv | |- ( ph -> ( seq M ( x. , H ) ` N ) = ( ( seq M ( x. , F ) ` N ) / ( seq M ( x. , G ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodfdiv.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | prodfdiv.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
|
| 3 | prodfdiv.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) |
|
| 4 | prodfdiv.4 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) =/= 0 ) |
|
| 5 | prodfdiv.5 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) / ( G ` k ) ) ) |
|
| 6 | fveq2 | |- ( n = k -> ( G ` n ) = ( G ` k ) ) |
|
| 7 | 6 | oveq2d | |- ( n = k -> ( 1 / ( G ` n ) ) = ( 1 / ( G ` k ) ) ) |
| 8 | eqid | |- ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) = ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) |
|
| 9 | ovex | |- ( 1 / ( G ` k ) ) e. _V |
|
| 10 | 7 8 9 | fvmpt | |- ( k e. ( M ... N ) -> ( ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ` k ) = ( 1 / ( G ` k ) ) ) |
| 11 | 10 | adantl | |- ( ( ph /\ k e. ( M ... N ) ) -> ( ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ` k ) = ( 1 / ( G ` k ) ) ) |
| 12 | 1 3 4 11 | prodfrec | |- ( ph -> ( seq M ( x. , ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ) ` N ) = ( 1 / ( seq M ( x. , G ) ` N ) ) ) |
| 13 | 12 | oveq2d | |- ( ph -> ( ( seq M ( x. , F ) ` N ) x. ( seq M ( x. , ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ) ` N ) ) = ( ( seq M ( x. , F ) ` N ) x. ( 1 / ( seq M ( x. , G ) ` N ) ) ) ) |
| 14 | eleq1w | |- ( k = n -> ( k e. ( M ... N ) <-> n e. ( M ... N ) ) ) |
|
| 15 | 14 | anbi2d | |- ( k = n -> ( ( ph /\ k e. ( M ... N ) ) <-> ( ph /\ n e. ( M ... N ) ) ) ) |
| 16 | fveq2 | |- ( k = n -> ( G ` k ) = ( G ` n ) ) |
|
| 17 | 16 | eleq1d | |- ( k = n -> ( ( G ` k ) e. CC <-> ( G ` n ) e. CC ) ) |
| 18 | 15 17 | imbi12d | |- ( k = n -> ( ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) <-> ( ( ph /\ n e. ( M ... N ) ) -> ( G ` n ) e. CC ) ) ) |
| 19 | 18 3 | chvarvv | |- ( ( ph /\ n e. ( M ... N ) ) -> ( G ` n ) e. CC ) |
| 20 | 16 | neeq1d | |- ( k = n -> ( ( G ` k ) =/= 0 <-> ( G ` n ) =/= 0 ) ) |
| 21 | 15 20 | imbi12d | |- ( k = n -> ( ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) =/= 0 ) <-> ( ( ph /\ n e. ( M ... N ) ) -> ( G ` n ) =/= 0 ) ) ) |
| 22 | 21 4 | chvarvv | |- ( ( ph /\ n e. ( M ... N ) ) -> ( G ` n ) =/= 0 ) |
| 23 | 19 22 | reccld | |- ( ( ph /\ n e. ( M ... N ) ) -> ( 1 / ( G ` n ) ) e. CC ) |
| 24 | 23 | fmpttd | |- ( ph -> ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) : ( M ... N ) --> CC ) |
| 25 | 24 | ffvelcdmda | |- ( ( ph /\ k e. ( M ... N ) ) -> ( ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ` k ) e. CC ) |
| 26 | 2 3 4 | divrecd | |- ( ( ph /\ k e. ( M ... N ) ) -> ( ( F ` k ) / ( G ` k ) ) = ( ( F ` k ) x. ( 1 / ( G ` k ) ) ) ) |
| 27 | 11 | oveq2d | |- ( ( ph /\ k e. ( M ... N ) ) -> ( ( F ` k ) x. ( ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ` k ) ) = ( ( F ` k ) x. ( 1 / ( G ` k ) ) ) ) |
| 28 | 26 5 27 | 3eqtr4d | |- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) x. ( ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ` k ) ) ) |
| 29 | 1 2 25 28 | prodfmul | |- ( ph -> ( seq M ( x. , H ) ` N ) = ( ( seq M ( x. , F ) ` N ) x. ( seq M ( x. , ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ) ` N ) ) ) |
| 30 | mulcl | |- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) |
|
| 31 | 30 | adantl | |- ( ( ph /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
| 32 | 1 2 31 | seqcl | |- ( ph -> ( seq M ( x. , F ) ` N ) e. CC ) |
| 33 | 1 3 31 | seqcl | |- ( ph -> ( seq M ( x. , G ) ` N ) e. CC ) |
| 34 | 1 3 4 | prodfn0 | |- ( ph -> ( seq M ( x. , G ) ` N ) =/= 0 ) |
| 35 | 32 33 34 | divrecd | |- ( ph -> ( ( seq M ( x. , F ) ` N ) / ( seq M ( x. , G ) ` N ) ) = ( ( seq M ( x. , F ) ` N ) x. ( 1 / ( seq M ( x. , G ) ` N ) ) ) ) |
| 36 | 13 29 35 | 3eqtr4d | |- ( ph -> ( seq M ( x. , H ) ` N ) = ( ( seq M ( x. , F ) ` N ) / ( seq M ( x. , G ) ` N ) ) ) |