This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prod1 | |- ( ( A C_ ( ZZ>= ` M ) \/ A e. Fin ) -> prod_ k e. A 1 = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 2 | simpr | |- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> M e. ZZ ) |
|
| 3 | ax-1ne0 | |- 1 =/= 0 |
|
| 4 | 3 | a1i | |- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> 1 =/= 0 ) |
| 5 | 1 | prodfclim1 | |- ( M e. ZZ -> seq M ( x. , ( ( ZZ>= ` M ) X. { 1 } ) ) ~~> 1 ) |
| 6 | 5 | adantl | |- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> seq M ( x. , ( ( ZZ>= ` M ) X. { 1 } ) ) ~~> 1 ) |
| 7 | simpl | |- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> A C_ ( ZZ>= ` M ) ) |
|
| 8 | 1ex | |- 1 e. _V |
|
| 9 | 8 | fvconst2 | |- ( k e. ( ZZ>= ` M ) -> ( ( ( ZZ>= ` M ) X. { 1 } ) ` k ) = 1 ) |
| 10 | ifid | |- if ( k e. A , 1 , 1 ) = 1 |
|
| 11 | 9 10 | eqtr4di | |- ( k e. ( ZZ>= ` M ) -> ( ( ( ZZ>= ` M ) X. { 1 } ) ` k ) = if ( k e. A , 1 , 1 ) ) |
| 12 | 11 | adantl | |- ( ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) /\ k e. ( ZZ>= ` M ) ) -> ( ( ( ZZ>= ` M ) X. { 1 } ) ` k ) = if ( k e. A , 1 , 1 ) ) |
| 13 | 1cnd | |- ( ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) /\ k e. A ) -> 1 e. CC ) |
|
| 14 | 1 2 4 6 7 12 13 | zprodn0 | |- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> prod_ k e. A 1 = 1 ) |
| 15 | uzf | |- ZZ>= : ZZ --> ~P ZZ |
|
| 16 | 15 | fdmi | |- dom ZZ>= = ZZ |
| 17 | 16 | eleq2i | |- ( M e. dom ZZ>= <-> M e. ZZ ) |
| 18 | ndmfv | |- ( -. M e. dom ZZ>= -> ( ZZ>= ` M ) = (/) ) |
|
| 19 | 17 18 | sylnbir | |- ( -. M e. ZZ -> ( ZZ>= ` M ) = (/) ) |
| 20 | 19 | sseq2d | |- ( -. M e. ZZ -> ( A C_ ( ZZ>= ` M ) <-> A C_ (/) ) ) |
| 21 | 20 | biimpac | |- ( ( A C_ ( ZZ>= ` M ) /\ -. M e. ZZ ) -> A C_ (/) ) |
| 22 | ss0 | |- ( A C_ (/) -> A = (/) ) |
|
| 23 | prodeq1 | |- ( A = (/) -> prod_ k e. A 1 = prod_ k e. (/) 1 ) |
|
| 24 | prod0 | |- prod_ k e. (/) 1 = 1 |
|
| 25 | 23 24 | eqtrdi | |- ( A = (/) -> prod_ k e. A 1 = 1 ) |
| 26 | 21 22 25 | 3syl | |- ( ( A C_ ( ZZ>= ` M ) /\ -. M e. ZZ ) -> prod_ k e. A 1 = 1 ) |
| 27 | 14 26 | pm2.61dan | |- ( A C_ ( ZZ>= ` M ) -> prod_ k e. A 1 = 1 ) |
| 28 | fz1f1o | |- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
|
| 29 | eqidd | |- ( k = ( f ` j ) -> 1 = 1 ) |
|
| 30 | simpl | |- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( # ` A ) e. NN ) |
|
| 31 | simpr | |- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 32 | 1cnd | |- ( ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ k e. A ) -> 1 e. CC ) |
|
| 33 | elfznn | |- ( j e. ( 1 ... ( # ` A ) ) -> j e. NN ) |
|
| 34 | 8 | fvconst2 | |- ( j e. NN -> ( ( NN X. { 1 } ) ` j ) = 1 ) |
| 35 | 33 34 | syl | |- ( j e. ( 1 ... ( # ` A ) ) -> ( ( NN X. { 1 } ) ` j ) = 1 ) |
| 36 | 35 | adantl | |- ( ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ j e. ( 1 ... ( # ` A ) ) ) -> ( ( NN X. { 1 } ) ` j ) = 1 ) |
| 37 | 29 30 31 32 36 | fprod | |- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> prod_ k e. A 1 = ( seq 1 ( x. , ( NN X. { 1 } ) ) ` ( # ` A ) ) ) |
| 38 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 39 | 38 | prodf1 | |- ( ( # ` A ) e. NN -> ( seq 1 ( x. , ( NN X. { 1 } ) ) ` ( # ` A ) ) = 1 ) |
| 40 | 39 | adantr | |- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( x. , ( NN X. { 1 } ) ) ` ( # ` A ) ) = 1 ) |
| 41 | 37 40 | eqtrd | |- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> prod_ k e. A 1 = 1 ) |
| 42 | 41 | ex | |- ( ( # ` A ) e. NN -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> prod_ k e. A 1 = 1 ) ) |
| 43 | 42 | exlimdv | |- ( ( # ` A ) e. NN -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> prod_ k e. A 1 = 1 ) ) |
| 44 | 43 | imp | |- ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> prod_ k e. A 1 = 1 ) |
| 45 | 25 44 | jaoi | |- ( ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ k e. A 1 = 1 ) |
| 46 | 28 45 | syl | |- ( A e. Fin -> prod_ k e. A 1 = 1 ) |
| 47 | 27 46 | jaoi | |- ( ( A C_ ( ZZ>= ` M ) \/ A e. Fin ) -> prod_ k e. A 1 = 1 ) |