This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prod1 | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝐴 ∈ Fin ) → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | simpr | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 3 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 4 | 3 | a1i | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → 1 ≠ 0 ) |
| 5 | 1 | prodfclim1 | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( · , ( ( ℤ≥ ‘ 𝑀 ) × { 1 } ) ) ⇝ 1 ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → seq 𝑀 ( · , ( ( ℤ≥ ‘ 𝑀 ) × { 1 } ) ) ⇝ 1 ) |
| 7 | simpl | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 8 | 1ex | ⊢ 1 ∈ V | |
| 9 | 8 | fvconst2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 1 } ) ‘ 𝑘 ) = 1 ) |
| 10 | ifid | ⊢ if ( 𝑘 ∈ 𝐴 , 1 , 1 ) = 1 | |
| 11 | 9 10 | eqtr4di | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 1 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 1 , 1 ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 1 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 1 , 1 ) ) |
| 13 | 1cnd | ⊢ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑘 ∈ 𝐴 ) → 1 ∈ ℂ ) | |
| 14 | 1 2 4 6 7 12 13 | zprodn0 | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |
| 15 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 16 | 15 | fdmi | ⊢ dom ℤ≥ = ℤ |
| 17 | 16 | eleq2i | ⊢ ( 𝑀 ∈ dom ℤ≥ ↔ 𝑀 ∈ ℤ ) |
| 18 | ndmfv | ⊢ ( ¬ 𝑀 ∈ dom ℤ≥ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) | |
| 19 | 17 18 | sylnbir | ⊢ ( ¬ 𝑀 ∈ ℤ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
| 20 | 19 | sseq2d | ⊢ ( ¬ 𝑀 ∈ ℤ → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ↔ 𝐴 ⊆ ∅ ) ) |
| 21 | 20 | biimpac | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ∅ ) |
| 22 | ss0 | ⊢ ( 𝐴 ⊆ ∅ → 𝐴 = ∅ ) | |
| 23 | prodeq1 | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 1 = ∏ 𝑘 ∈ ∅ 1 ) | |
| 24 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 1 = 1 | |
| 25 | 23 24 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |
| 26 | 21 22 25 | 3syl | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |
| 27 | 14 26 | pm2.61dan | ⊢ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |
| 28 | fz1f1o | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) | |
| 29 | eqidd | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑗 ) → 1 = 1 ) | |
| 30 | simpl | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) | |
| 31 | simpr | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | |
| 32 | 1cnd | ⊢ ( ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 1 ∈ ℂ ) | |
| 33 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑗 ∈ ℕ ) | |
| 34 | 8 | fvconst2 | ⊢ ( 𝑗 ∈ ℕ → ( ( ℕ × { 1 } ) ‘ 𝑗 ) = 1 ) |
| 35 | 33 34 | syl | ⊢ ( 𝑗 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ( ℕ × { 1 } ) ‘ 𝑗 ) = 1 ) |
| 36 | 35 | adantl | ⊢ ( ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ 𝑗 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ℕ × { 1 } ) ‘ 𝑗 ) = 1 ) |
| 37 | 29 30 31 32 36 | fprod | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 1 = ( seq 1 ( · , ( ℕ × { 1 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 38 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 39 | 38 | prodf1 | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( seq 1 ( · , ( ℕ × { 1 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) = 1 ) |
| 40 | 39 | adantr | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( seq 1 ( · , ( ℕ × { 1 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) = 1 ) |
| 41 | 37 40 | eqtrd | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |
| 42 | 41 | ex | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ∏ 𝑘 ∈ 𝐴 1 = 1 ) ) |
| 43 | 42 | exlimdv | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ∏ 𝑘 ∈ 𝐴 1 = 1 ) ) |
| 44 | 43 | imp | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |
| 45 | 25 44 | jaoi | ⊢ ( ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |
| 46 | 28 45 | syl | ⊢ ( 𝐴 ∈ Fin → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |
| 47 | 27 46 | jaoi | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝐴 ∈ Fin ) → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |