This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zprodn0.1 | |- Z = ( ZZ>= ` M ) |
|
| zprodn0.2 | |- ( ph -> M e. ZZ ) |
||
| zprodn0.3 | |- ( ph -> X =/= 0 ) |
||
| zprodn0.4 | |- ( ph -> seq M ( x. , F ) ~~> X ) |
||
| zprodn0.5 | |- ( ph -> A C_ Z ) |
||
| zprodn0.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. A , B , 1 ) ) |
||
| zprodn0.7 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| Assertion | zprodn0 | |- ( ph -> prod_ k e. A B = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zprodn0.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | zprodn0.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | zprodn0.3 | |- ( ph -> X =/= 0 ) |
|
| 4 | zprodn0.4 | |- ( ph -> seq M ( x. , F ) ~~> X ) |
|
| 5 | zprodn0.5 | |- ( ph -> A C_ Z ) |
|
| 6 | zprodn0.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. A , B , 1 ) ) |
|
| 7 | zprodn0.7 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 8 | 1 2 4 3 | ntrivcvgn0 | |- ( ph -> E. m e. Z E. x ( x =/= 0 /\ seq m ( x. , F ) ~~> x ) ) |
| 9 | 1 2 8 5 6 7 | zprod | |- ( ph -> prod_ k e. A B = ( ~~> ` seq M ( x. , F ) ) ) |
| 10 | fclim | |- ~~> : dom ~~> --> CC |
|
| 11 | ffun | |- ( ~~> : dom ~~> --> CC -> Fun ~~> ) |
|
| 12 | 10 11 | ax-mp | |- Fun ~~> |
| 13 | funbrfv | |- ( Fun ~~> -> ( seq M ( x. , F ) ~~> X -> ( ~~> ` seq M ( x. , F ) ) = X ) ) |
|
| 14 | 12 4 13 | mpsyl | |- ( ph -> ( ~~> ` seq M ( x. , F ) ) = X ) |
| 15 | 9 14 | eqtrd | |- ( ph -> prod_ k e. A B = X ) |