This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. See prmdvdsncoprmbd for a version where the existential quantifier is restricted to primes. (Contributed by AV, 9-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ncoprmgcdne1b | |- ( ( A e. NN /\ B e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> ( A gcd B ) =/= 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn | |- ( i e. ( ZZ>= ` 2 ) -> i e. NN ) |
|
| 2 | 1 | adantr | |- ( ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) -> i e. NN ) |
| 3 | eluz2b3 | |- ( i e. ( ZZ>= ` 2 ) <-> ( i e. NN /\ i =/= 1 ) ) |
|
| 4 | neneq | |- ( i =/= 1 -> -. i = 1 ) |
|
| 5 | 3 4 | simplbiim | |- ( i e. ( ZZ>= ` 2 ) -> -. i = 1 ) |
| 6 | 5 | anim1ci | |- ( ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) -> ( ( i || A /\ i || B ) /\ -. i = 1 ) ) |
| 7 | 2 6 | jca | |- ( ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) -> ( i e. NN /\ ( ( i || A /\ i || B ) /\ -. i = 1 ) ) ) |
| 8 | neqne | |- ( -. i = 1 -> i =/= 1 ) |
|
| 9 | 8 | anim1ci | |- ( ( -. i = 1 /\ i e. NN ) -> ( i e. NN /\ i =/= 1 ) ) |
| 10 | 9 3 | sylibr | |- ( ( -. i = 1 /\ i e. NN ) -> i e. ( ZZ>= ` 2 ) ) |
| 11 | 10 | ex | |- ( -. i = 1 -> ( i e. NN -> i e. ( ZZ>= ` 2 ) ) ) |
| 12 | 11 | adantl | |- ( ( ( i || A /\ i || B ) /\ -. i = 1 ) -> ( i e. NN -> i e. ( ZZ>= ` 2 ) ) ) |
| 13 | 12 | impcom | |- ( ( i e. NN /\ ( ( i || A /\ i || B ) /\ -. i = 1 ) ) -> i e. ( ZZ>= ` 2 ) ) |
| 14 | 13 | adantl | |- ( ( ( A e. NN /\ B e. NN ) /\ ( i e. NN /\ ( ( i || A /\ i || B ) /\ -. i = 1 ) ) ) -> i e. ( ZZ>= ` 2 ) ) |
| 15 | simprrl | |- ( ( ( A e. NN /\ B e. NN ) /\ ( i e. NN /\ ( ( i || A /\ i || B ) /\ -. i = 1 ) ) ) -> ( i || A /\ i || B ) ) |
|
| 16 | 14 15 | jca | |- ( ( ( A e. NN /\ B e. NN ) /\ ( i e. NN /\ ( ( i || A /\ i || B ) /\ -. i = 1 ) ) ) -> ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) |
| 17 | 16 | ex | |- ( ( A e. NN /\ B e. NN ) -> ( ( i e. NN /\ ( ( i || A /\ i || B ) /\ -. i = 1 ) ) -> ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) ) |
| 18 | 7 17 | impbid2 | |- ( ( A e. NN /\ B e. NN ) -> ( ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) <-> ( i e. NN /\ ( ( i || A /\ i || B ) /\ -. i = 1 ) ) ) ) |
| 19 | 18 | rexbidv2 | |- ( ( A e. NN /\ B e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> E. i e. NN ( ( i || A /\ i || B ) /\ -. i = 1 ) ) ) |
| 20 | rexanali | |- ( E. i e. NN ( ( i || A /\ i || B ) /\ -. i = 1 ) <-> -. A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) ) |
|
| 21 | 20 | a1i | |- ( ( A e. NN /\ B e. NN ) -> ( E. i e. NN ( ( i || A /\ i || B ) /\ -. i = 1 ) <-> -. A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) ) ) |
| 22 | coprmgcdb | |- ( ( A e. NN /\ B e. NN ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) <-> ( A gcd B ) = 1 ) ) |
|
| 23 | 22 | necon3bbid | |- ( ( A e. NN /\ B e. NN ) -> ( -. A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) <-> ( A gcd B ) =/= 1 ) ) |
| 24 | 19 21 23 | 3bitrd | |- ( ( A e. NN /\ B e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> ( A gcd B ) =/= 1 ) ) |