This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem orbi1

Description: Theorem *4.37 of WhiteheadRussell p. 118. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion orbi1
|- ( ( ph <-> ps ) -> ( ( ph \/ ch ) <-> ( ps \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ( ph <-> ps ) -> ( ph <-> ps ) )
2 1 orbi1d
 |-  ( ( ph <-> ps ) -> ( ( ph \/ ch ) <-> ( ps \/ ch ) ) )