This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995) Reduce axiom usage. (Revised by GG, 3-Oct-2024) (Proof shortened by Wolf Lammen, 31-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl3ga.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| vtocl3ga.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
| vtocl3ga.3 | |- ( z = C -> ( ch <-> th ) ) |
||
| vtocl3ga.4 | |- ( ( x e. D /\ y e. R /\ z e. S ) -> ph ) |
||
| Assertion | vtocl3ga | |- ( ( A e. D /\ B e. R /\ C e. S ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl3ga.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | vtocl3ga.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 3 | vtocl3ga.3 | |- ( z = C -> ( ch <-> th ) ) |
|
| 4 | vtocl3ga.4 | |- ( ( x e. D /\ y e. R /\ z e. S ) -> ph ) |
|
| 5 | 3 | imbi2d | |- ( z = C -> ( ( ( A e. D /\ B e. R ) -> ch ) <-> ( ( A e. D /\ B e. R ) -> th ) ) ) |
| 6 | 1 | imbi2d | |- ( x = A -> ( ( z e. S -> ph ) <-> ( z e. S -> ps ) ) ) |
| 7 | 2 | imbi2d | |- ( y = B -> ( ( z e. S -> ps ) <-> ( z e. S -> ch ) ) ) |
| 8 | 4 | 3expia | |- ( ( x e. D /\ y e. R ) -> ( z e. S -> ph ) ) |
| 9 | 6 7 8 | vtocl2ga | |- ( ( A e. D /\ B e. R ) -> ( z e. S -> ch ) ) |
| 10 | 9 | com12 | |- ( z e. S -> ( ( A e. D /\ B e. R ) -> ch ) ) |
| 11 | 5 10 | vtoclga | |- ( C e. S -> ( ( A e. D /\ B e. R ) -> th ) ) |
| 12 | 11 | impcom | |- ( ( ( A e. D /\ B e. R ) /\ C e. S ) -> th ) |
| 13 | 12 | 3impa | |- ( ( A e. D /\ B e. R /\ C e. S ) -> th ) |