This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the product ordering in a structure product. (Contributed by Mario Carneiro, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsbasmpt.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbasmpt.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsbasmpt.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | ||
| prdsplusgval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| prdsplusgval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| prdsleval.l | ⊢ ≤ = ( le ‘ 𝑌 ) | ||
| Assertion | prdsleval | ⊢ ( 𝜑 → ( 𝐹 ≤ 𝐺 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsbasmpt.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsbasmpt.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | prdsbasmpt.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | |
| 6 | prdsplusgval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 7 | prdsplusgval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 8 | prdsleval.l | ⊢ ≤ = ( le ‘ 𝑌 ) | |
| 9 | df-br | ⊢ ( 𝐹 ≤ 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ≤ ) | |
| 10 | fnex | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ V ) | |
| 11 | 5 4 10 | syl2anc | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 12 | 5 | fndmd | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
| 13 | 1 3 11 2 12 8 | prdsle | ⊢ ( 𝜑 → ≤ = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 14 | vex | ⊢ 𝑓 ∈ V | |
| 15 | vex | ⊢ 𝑔 ∈ V | |
| 16 | 14 15 | prss | ⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ↔ { 𝑓 , 𝑔 } ⊆ 𝐵 ) |
| 17 | 16 | anbi1i | ⊢ ( ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ↔ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 18 | 17 | opabbii | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } |
| 19 | 13 18 | eqtr4di | ⊢ ( 𝜑 → ≤ = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 20 | 19 | eleq2d | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∈ ≤ ↔ 〈 𝐹 , 𝐺 〉 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) ) |
| 21 | 9 20 | bitrid | ⊢ ( 𝜑 → ( 𝐹 ≤ 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) ) |
| 22 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 23 | fveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 24 | 22 23 | breqan12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |
| 25 | 24 | ralbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |
| 26 | 25 | opelopab2a | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 〈 𝐹 , 𝐺 〉 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |
| 27 | 6 7 26 | syl2anc | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |
| 28 | 21 27 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ≤ 𝐺 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |