This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opelopabga.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
| Assertion | opelopab2a | |- ( ( A e. C /\ B e. D ) -> ( <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabga.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
| 2 | eleq1 | |- ( x = A -> ( x e. C <-> A e. C ) ) |
|
| 3 | eleq1 | |- ( y = B -> ( y e. D <-> B e. D ) ) |
|
| 4 | 2 3 | bi2anan9 | |- ( ( x = A /\ y = B ) -> ( ( x e. C /\ y e. D ) <-> ( A e. C /\ B e. D ) ) ) |
| 5 | 4 1 | anbi12d | |- ( ( x = A /\ y = B ) -> ( ( ( x e. C /\ y e. D ) /\ ph ) <-> ( ( A e. C /\ B e. D ) /\ ps ) ) ) |
| 6 | 5 | opelopabga | |- ( ( A e. C /\ B e. D ) -> ( <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } <-> ( ( A e. C /\ B e. D ) /\ ps ) ) ) |
| 7 | 6 | bianabs | |- ( ( A e. C /\ B e. D ) -> ( <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } <-> ps ) ) |