This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singlegon is an element of the class of singlegons. The converse ( basrestermcfolem ) also holds. This is trivial if B is b ( abid ). (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | discsntermlem | |- ( E. x B = { x } -> B e. { b | E. x b = { x } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex | |- { x } e. _V |
|
| 2 | eleq1 | |- ( B = { x } -> ( B e. _V <-> { x } e. _V ) ) |
|
| 3 | 1 2 | mpbiri | |- ( B = { x } -> B e. _V ) |
| 4 | 3 | exlimiv | |- ( E. x B = { x } -> B e. _V ) |
| 5 | eqeq1 | |- ( b = B -> ( b = { x } <-> B = { x } ) ) |
|
| 6 | 5 | exbidv | |- ( b = B -> ( E. x b = { x } <-> E. x B = { x } ) ) |
| 7 | 6 | elabg | |- ( B e. _V -> ( B e. { b | E. x b = { x } } <-> E. x B = { x } ) ) |
| 8 | 4 7 | syl | |- ( E. x B = { x } -> ( B e. { b | E. x b = { x } } <-> E. x B = { x } ) ) |
| 9 | 8 | ibir | |- ( E. x B = { x } -> B e. { b | E. x b = { x } } ) |