This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015) (Proof shortened by AV, 12-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oduval.d | |- D = ( ODual ` O ) |
|
| odubas.b | |- B = ( Base ` O ) |
||
| Assertion | odubas | |- B = ( Base ` D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oduval.d | |- D = ( ODual ` O ) |
|
| 2 | odubas.b | |- B = ( Base ` O ) |
|
| 3 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 4 | plendxnbasendx | |- ( le ` ndx ) =/= ( Base ` ndx ) |
|
| 5 | 4 | necomi | |- ( Base ` ndx ) =/= ( le ` ndx ) |
| 6 | 3 5 | setsnid | |- ( Base ` O ) = ( Base ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) |
| 7 | eqid | |- ( le ` O ) = ( le ` O ) |
|
| 8 | 1 7 | oduval | |- D = ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) |
| 9 | 8 | fveq2i | |- ( Base ` D ) = ( Base ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) |
| 10 | 6 2 9 | 3eqtr4i | |- B = ( Base ` D ) |