This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | poslubdg.l | |- .<_ = ( le ` K ) |
|
| poslubdg.b | |- ( ph -> B = ( Base ` K ) ) |
||
| poslubdg.u | |- ( ph -> U = ( lub ` K ) ) |
||
| poslubdg.k | |- ( ph -> K e. Poset ) |
||
| poslubdg.s | |- ( ph -> S C_ B ) |
||
| poslubdg.t | |- ( ph -> T e. B ) |
||
| poslubdg.ub | |- ( ( ph /\ x e. S ) -> x .<_ T ) |
||
| poslubdg.le | |- ( ( ph /\ y e. B /\ A. x e. S x .<_ y ) -> T .<_ y ) |
||
| Assertion | poslubdg | |- ( ph -> ( U ` S ) = T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poslubdg.l | |- .<_ = ( le ` K ) |
|
| 2 | poslubdg.b | |- ( ph -> B = ( Base ` K ) ) |
|
| 3 | poslubdg.u | |- ( ph -> U = ( lub ` K ) ) |
|
| 4 | poslubdg.k | |- ( ph -> K e. Poset ) |
|
| 5 | poslubdg.s | |- ( ph -> S C_ B ) |
|
| 6 | poslubdg.t | |- ( ph -> T e. B ) |
|
| 7 | poslubdg.ub | |- ( ( ph /\ x e. S ) -> x .<_ T ) |
|
| 8 | poslubdg.le | |- ( ( ph /\ y e. B /\ A. x e. S x .<_ y ) -> T .<_ y ) |
|
| 9 | 3 | fveq1d | |- ( ph -> ( U ` S ) = ( ( lub ` K ) ` S ) ) |
| 10 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 11 | eqid | |- ( lub ` K ) = ( lub ` K ) |
|
| 12 | 5 2 | sseqtrd | |- ( ph -> S C_ ( Base ` K ) ) |
| 13 | 6 2 | eleqtrd | |- ( ph -> T e. ( Base ` K ) ) |
| 14 | 2 | eleq2d | |- ( ph -> ( y e. B <-> y e. ( Base ` K ) ) ) |
| 15 | 14 | biimpar | |- ( ( ph /\ y e. ( Base ` K ) ) -> y e. B ) |
| 16 | 15 | 3adant3 | |- ( ( ph /\ y e. ( Base ` K ) /\ A. x e. S x .<_ y ) -> y e. B ) |
| 17 | 16 8 | syld3an2 | |- ( ( ph /\ y e. ( Base ` K ) /\ A. x e. S x .<_ y ) -> T .<_ y ) |
| 18 | 1 10 11 4 12 13 7 17 | poslubd | |- ( ph -> ( ( lub ` K ) ` S ) = T ) |
| 19 | 9 18 | eqtrd | |- ( ph -> ( U ` S ) = T ) |