This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fndifnfp | |- ( F Fn A -> dom ( F \ _I ) = { x e. A | ( F ` x ) =/= x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn2 | |- ( F Fn A <-> F : A --> _V ) |
|
| 2 | fssxp | |- ( F : A --> _V -> F C_ ( A X. _V ) ) |
|
| 3 | 1 2 | sylbi | |- ( F Fn A -> F C_ ( A X. _V ) ) |
| 4 | ssdif0 | |- ( F C_ ( A X. _V ) <-> ( F \ ( A X. _V ) ) = (/) ) |
|
| 5 | 3 4 | sylib | |- ( F Fn A -> ( F \ ( A X. _V ) ) = (/) ) |
| 6 | 5 | uneq2d | |- ( F Fn A -> ( ( F \ _I ) u. ( F \ ( A X. _V ) ) ) = ( ( F \ _I ) u. (/) ) ) |
| 7 | un0 | |- ( ( F \ _I ) u. (/) ) = ( F \ _I ) |
|
| 8 | 6 7 | eqtr2di | |- ( F Fn A -> ( F \ _I ) = ( ( F \ _I ) u. ( F \ ( A X. _V ) ) ) ) |
| 9 | df-res | |- ( _I |` A ) = ( _I i^i ( A X. _V ) ) |
|
| 10 | 9 | difeq2i | |- ( F \ ( _I |` A ) ) = ( F \ ( _I i^i ( A X. _V ) ) ) |
| 11 | difindi | |- ( F \ ( _I i^i ( A X. _V ) ) ) = ( ( F \ _I ) u. ( F \ ( A X. _V ) ) ) |
|
| 12 | 10 11 | eqtri | |- ( F \ ( _I |` A ) ) = ( ( F \ _I ) u. ( F \ ( A X. _V ) ) ) |
| 13 | 8 12 | eqtr4di | |- ( F Fn A -> ( F \ _I ) = ( F \ ( _I |` A ) ) ) |
| 14 | 13 | dmeqd | |- ( F Fn A -> dom ( F \ _I ) = dom ( F \ ( _I |` A ) ) ) |
| 15 | fnresi | |- ( _I |` A ) Fn A |
|
| 16 | fndmdif | |- ( ( F Fn A /\ ( _I |` A ) Fn A ) -> dom ( F \ ( _I |` A ) ) = { x e. A | ( F ` x ) =/= ( ( _I |` A ) ` x ) } ) |
|
| 17 | 15 16 | mpan2 | |- ( F Fn A -> dom ( F \ ( _I |` A ) ) = { x e. A | ( F ` x ) =/= ( ( _I |` A ) ` x ) } ) |
| 18 | fvresi | |- ( x e. A -> ( ( _I |` A ) ` x ) = x ) |
|
| 19 | 18 | neeq2d | |- ( x e. A -> ( ( F ` x ) =/= ( ( _I |` A ) ` x ) <-> ( F ` x ) =/= x ) ) |
| 20 | 19 | rabbiia | |- { x e. A | ( F ` x ) =/= ( ( _I |` A ) ` x ) } = { x e. A | ( F ` x ) =/= x } |
| 21 | 20 | a1i | |- ( F Fn A -> { x e. A | ( F ` x ) =/= ( ( _I |` A ) ` x ) } = { x e. A | ( F ` x ) =/= x } ) |
| 22 | 14 17 21 | 3eqtrd | |- ( F Fn A -> dom ( F \ _I ) = { x e. A | ( F ` x ) =/= x } ) |