This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pmtrfval.t | |- T = ( pmTrsp ` D ) |
|
| Assertion | pmtrfv | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ Z e. D ) -> ( ( T ` P ) ` Z ) = if ( Z e. P , U. ( P \ { Z } ) , Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | |- T = ( pmTrsp ` D ) |
|
| 2 | 1 | pmtrval | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T ` P ) = ( z e. D |-> if ( z e. P , U. ( P \ { z } ) , z ) ) ) |
| 3 | 2 | fveq1d | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( ( T ` P ) ` Z ) = ( ( z e. D |-> if ( z e. P , U. ( P \ { z } ) , z ) ) ` Z ) ) |
| 4 | 3 | adantr | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ Z e. D ) -> ( ( T ` P ) ` Z ) = ( ( z e. D |-> if ( z e. P , U. ( P \ { z } ) , z ) ) ` Z ) ) |
| 5 | eqid | |- ( z e. D |-> if ( z e. P , U. ( P \ { z } ) , z ) ) = ( z e. D |-> if ( z e. P , U. ( P \ { z } ) , z ) ) |
|
| 6 | eleq1 | |- ( z = Z -> ( z e. P <-> Z e. P ) ) |
|
| 7 | sneq | |- ( z = Z -> { z } = { Z } ) |
|
| 8 | 7 | difeq2d | |- ( z = Z -> ( P \ { z } ) = ( P \ { Z } ) ) |
| 9 | 8 | unieqd | |- ( z = Z -> U. ( P \ { z } ) = U. ( P \ { Z } ) ) |
| 10 | id | |- ( z = Z -> z = Z ) |
|
| 11 | 6 9 10 | ifbieq12d | |- ( z = Z -> if ( z e. P , U. ( P \ { z } ) , z ) = if ( Z e. P , U. ( P \ { Z } ) , Z ) ) |
| 12 | simpr | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ Z e. D ) -> Z e. D ) |
|
| 13 | simpl3 | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ Z e. D ) -> P ~~ 2o ) |
|
| 14 | relen | |- Rel ~~ |
|
| 15 | 14 | brrelex1i | |- ( P ~~ 2o -> P e. _V ) |
| 16 | difexg | |- ( P e. _V -> ( P \ { Z } ) e. _V ) |
|
| 17 | uniexg | |- ( ( P \ { Z } ) e. _V -> U. ( P \ { Z } ) e. _V ) |
|
| 18 | 13 15 16 17 | 4syl | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ Z e. D ) -> U. ( P \ { Z } ) e. _V ) |
| 19 | ifexg | |- ( ( U. ( P \ { Z } ) e. _V /\ Z e. D ) -> if ( Z e. P , U. ( P \ { Z } ) , Z ) e. _V ) |
|
| 20 | 18 19 | sylancom | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ Z e. D ) -> if ( Z e. P , U. ( P \ { Z } ) , Z ) e. _V ) |
| 21 | 5 11 12 20 | fvmptd3 | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ Z e. D ) -> ( ( z e. D |-> if ( z e. P , U. ( P \ { z } ) , z ) ) ` Z ) = if ( Z e. P , U. ( P \ { Z } ) , Z ) ) |
| 22 | 4 21 | eqtrd | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ Z e. D ) -> ( ( T ` P ) ` Z ) = if ( Z e. P , U. ( P \ { Z } ) , Z ) ) |