This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
||
| Assertion | pmtrdifel | |- A. t e. T E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| 2 | pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
|
| 3 | eqid | |- ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) |
|
| 4 | 1 2 3 | pmtrdifellem1 | |- ( t e. T -> ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) e. R ) |
| 5 | 1 2 3 | pmtrdifellem3 | |- ( t e. T -> A. x e. ( N \ { K } ) ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) |
| 6 | fveq1 | |- ( r = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) -> ( r ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) |
|
| 7 | 6 | eqeq2d | |- ( r = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) -> ( ( t ` x ) = ( r ` x ) <-> ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) ) |
| 8 | 7 | ralbidv | |- ( r = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) -> ( A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) <-> A. x e. ( N \ { K } ) ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) ) |
| 9 | 8 | rspcev | |- ( ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) e. R /\ A. x e. ( N \ { K } ) ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) -> E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) ) |
| 10 | 4 5 9 | syl2anc | |- ( t e. T -> E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) ) |
| 11 | 10 | rgen | |- A. t e. T E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) |