This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difsnexi | |- ( ( N \ { K } ) e. _V -> N e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( K e. N /\ ( N \ { K } ) e. _V ) -> ( N \ { K } ) e. _V ) |
|
| 2 | snex | |- { K } e. _V |
|
| 3 | unexg | |- ( ( ( N \ { K } ) e. _V /\ { K } e. _V ) -> ( ( N \ { K } ) u. { K } ) e. _V ) |
|
| 4 | 1 2 3 | sylancl | |- ( ( K e. N /\ ( N \ { K } ) e. _V ) -> ( ( N \ { K } ) u. { K } ) e. _V ) |
| 5 | difsnid | |- ( K e. N -> ( ( N \ { K } ) u. { K } ) = N ) |
|
| 6 | 5 | eqcomd | |- ( K e. N -> N = ( ( N \ { K } ) u. { K } ) ) |
| 7 | 6 | eleq1d | |- ( K e. N -> ( N e. _V <-> ( ( N \ { K } ) u. { K } ) e. _V ) ) |
| 8 | 7 | adantr | |- ( ( K e. N /\ ( N \ { K } ) e. _V ) -> ( N e. _V <-> ( ( N \ { K } ) u. { K } ) e. _V ) ) |
| 9 | 4 8 | mpbird | |- ( ( K e. N /\ ( N \ { K } ) e. _V ) -> N e. _V ) |
| 10 | 9 | ex | |- ( K e. N -> ( ( N \ { K } ) e. _V -> N e. _V ) ) |
| 11 | difsn | |- ( -. K e. N -> ( N \ { K } ) = N ) |
|
| 12 | 11 | eleq1d | |- ( -. K e. N -> ( ( N \ { K } ) e. _V <-> N e. _V ) ) |
| 13 | 12 | biimpd | |- ( -. K e. N -> ( ( N \ { K } ) e. _V -> N e. _V ) ) |
| 14 | 10 13 | pm2.61i | |- ( ( N \ { K } ) e. _V -> N e. _V ) |