This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iinxprg.1 | |- ( x = A -> C = D ) |
|
| iinxprg.2 | |- ( x = B -> C = E ) |
||
| Assertion | iinxprg | |- ( ( A e. V /\ B e. W ) -> |^|_ x e. { A , B } C = ( D i^i E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinxprg.1 | |- ( x = A -> C = D ) |
|
| 2 | iinxprg.2 | |- ( x = B -> C = E ) |
|
| 3 | 1 | eleq2d | |- ( x = A -> ( y e. C <-> y e. D ) ) |
| 4 | 2 | eleq2d | |- ( x = B -> ( y e. C <-> y e. E ) ) |
| 5 | 3 4 | ralprg | |- ( ( A e. V /\ B e. W ) -> ( A. x e. { A , B } y e. C <-> ( y e. D /\ y e. E ) ) ) |
| 6 | 5 | abbidv | |- ( ( A e. V /\ B e. W ) -> { y | A. x e. { A , B } y e. C } = { y | ( y e. D /\ y e. E ) } ) |
| 7 | df-iin | |- |^|_ x e. { A , B } C = { y | A. x e. { A , B } y e. C } |
|
| 8 | df-in | |- ( D i^i E ) = { y | ( y e. D /\ y e. E ) } |
|
| 9 | 6 7 8 | 3eqtr4g | |- ( ( A e. V /\ B e. W ) -> |^|_ x e. { A , B } C = ( D i^i E ) ) |