This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Meet value. Since both sides evaluate to (/) when they don't exist, for convenience we drop the { X , Y } e. dom G requirement. (Contributed by NM, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetdef.u | |- G = ( glb ` K ) |
|
| meetdef.m | |- ./\ = ( meet ` K ) |
||
| meetdef.k | |- ( ph -> K e. V ) |
||
| meetdef.x | |- ( ph -> X e. W ) |
||
| meetdef.y | |- ( ph -> Y e. Z ) |
||
| Assertion | meetval | |- ( ph -> ( X ./\ Y ) = ( G ` { X , Y } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetdef.u | |- G = ( glb ` K ) |
|
| 2 | meetdef.m | |- ./\ = ( meet ` K ) |
|
| 3 | meetdef.k | |- ( ph -> K e. V ) |
|
| 4 | meetdef.x | |- ( ph -> X e. W ) |
|
| 5 | meetdef.y | |- ( ph -> Y e. Z ) |
|
| 6 | 1 2 | meetfval2 | |- ( K e. V -> ./\ = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } ) |
| 7 | 3 6 | syl | |- ( ph -> ./\ = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } ) |
| 8 | 7 | oveqd | |- ( ph -> ( X ./\ Y ) = ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) ) |
| 9 | 8 | adantr | |- ( ( ph /\ { X , Y } e. dom G ) -> ( X ./\ Y ) = ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) ) |
| 10 | simpr | |- ( ( ph /\ { X , Y } e. dom G ) -> { X , Y } e. dom G ) |
|
| 11 | eqidd | |- ( ( ph /\ { X , Y } e. dom G ) -> ( G ` { X , Y } ) = ( G ` { X , Y } ) ) |
|
| 12 | fvexd | |- ( ph -> ( G ` { X , Y } ) e. _V ) |
|
| 13 | preq12 | |- ( ( x = X /\ y = Y ) -> { x , y } = { X , Y } ) |
|
| 14 | 13 | eleq1d | |- ( ( x = X /\ y = Y ) -> ( { x , y } e. dom G <-> { X , Y } e. dom G ) ) |
| 15 | 14 | 3adant3 | |- ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> ( { x , y } e. dom G <-> { X , Y } e. dom G ) ) |
| 16 | simp3 | |- ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> z = ( G ` { X , Y } ) ) |
|
| 17 | 13 | fveq2d | |- ( ( x = X /\ y = Y ) -> ( G ` { x , y } ) = ( G ` { X , Y } ) ) |
| 18 | 17 | 3adant3 | |- ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> ( G ` { x , y } ) = ( G ` { X , Y } ) ) |
| 19 | 16 18 | eqeq12d | |- ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> ( z = ( G ` { x , y } ) <-> ( G ` { X , Y } ) = ( G ` { X , Y } ) ) ) |
| 20 | 15 19 | anbi12d | |- ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> ( ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) <-> ( { X , Y } e. dom G /\ ( G ` { X , Y } ) = ( G ` { X , Y } ) ) ) ) |
| 21 | moeq | |- E* z z = ( G ` { x , y } ) |
|
| 22 | 21 | moani | |- E* z ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) |
| 23 | eqid | |- { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } |
|
| 24 | 20 22 23 | ovigg | |- ( ( X e. W /\ Y e. Z /\ ( G ` { X , Y } ) e. _V ) -> ( ( { X , Y } e. dom G /\ ( G ` { X , Y } ) = ( G ` { X , Y } ) ) -> ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) = ( G ` { X , Y } ) ) ) |
| 25 | 4 5 12 24 | syl3anc | |- ( ph -> ( ( { X , Y } e. dom G /\ ( G ` { X , Y } ) = ( G ` { X , Y } ) ) -> ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) = ( G ` { X , Y } ) ) ) |
| 26 | 25 | adantr | |- ( ( ph /\ { X , Y } e. dom G ) -> ( ( { X , Y } e. dom G /\ ( G ` { X , Y } ) = ( G ` { X , Y } ) ) -> ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) = ( G ` { X , Y } ) ) ) |
| 27 | 10 11 26 | mp2and | |- ( ( ph /\ { X , Y } e. dom G ) -> ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) = ( G ` { X , Y } ) ) |
| 28 | 9 27 | eqtrd | |- ( ( ph /\ { X , Y } e. dom G ) -> ( X ./\ Y ) = ( G ` { X , Y } ) ) |
| 29 | 1 2 3 4 5 | meetdef | |- ( ph -> ( <. X , Y >. e. dom ./\ <-> { X , Y } e. dom G ) ) |
| 30 | 29 | notbid | |- ( ph -> ( -. <. X , Y >. e. dom ./\ <-> -. { X , Y } e. dom G ) ) |
| 31 | df-ov | |- ( X ./\ Y ) = ( ./\ ` <. X , Y >. ) |
|
| 32 | ndmfv | |- ( -. <. X , Y >. e. dom ./\ -> ( ./\ ` <. X , Y >. ) = (/) ) |
|
| 33 | 31 32 | eqtrid | |- ( -. <. X , Y >. e. dom ./\ -> ( X ./\ Y ) = (/) ) |
| 34 | 30 33 | biimtrrdi | |- ( ph -> ( -. { X , Y } e. dom G -> ( X ./\ Y ) = (/) ) ) |
| 35 | 34 | imp | |- ( ( ph /\ -. { X , Y } e. dom G ) -> ( X ./\ Y ) = (/) ) |
| 36 | ndmfv | |- ( -. { X , Y } e. dom G -> ( G ` { X , Y } ) = (/) ) |
|
| 37 | 36 | adantl | |- ( ( ph /\ -. { X , Y } e. dom G ) -> ( G ` { X , Y } ) = (/) ) |
| 38 | 35 37 | eqtr4d | |- ( ( ph /\ -. { X , Y } e. dom G ) -> ( X ./\ Y ) = ( G ` { X , Y } ) ) |
| 39 | 28 38 | pm2.61dan | |- ( ph -> ( X ./\ Y ) = ( G ` { X , Y } ) ) |