This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.242 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotavalsb | |- ( A. x ( ph <-> x = y ) -> ( [. y / z ]. ps <-> [. ( iota x ph ) / z ]. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a | |- ( A. x ( ph <-> x = y ) -> E. y A. x ( ph <-> x = y ) ) |
|
| 2 | eu6 | |- ( E! x ph <-> E. y A. x ( ph <-> x = y ) ) |
|
| 3 | iotavalb | |- ( E! x ph -> ( A. x ( ph <-> x = y ) <-> ( iota x ph ) = y ) ) |
|
| 4 | dfsbcq | |- ( y = ( iota x ph ) -> ( [. y / z ]. ps <-> [. ( iota x ph ) / z ]. ps ) ) |
|
| 5 | 4 | eqcoms | |- ( ( iota x ph ) = y -> ( [. y / z ]. ps <-> [. ( iota x ph ) / z ]. ps ) ) |
| 6 | 3 5 | biimtrdi | |- ( E! x ph -> ( A. x ( ph <-> x = y ) -> ( [. y / z ]. ps <-> [. ( iota x ph ) / z ]. ps ) ) ) |
| 7 | 2 6 | sylbir | |- ( E. y A. x ( ph <-> x = y ) -> ( A. x ( ph <-> x = y ) -> ( [. y / z ]. ps <-> [. ( iota x ph ) / z ]. ps ) ) ) |
| 8 | 1 7 | mpcom | |- ( A. x ( ph <-> x = y ) -> ( [. y / z ]. ps <-> [. ( iota x ph ) / z ]. ps ) ) |