This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.12 in WhiteheadRussell p. 184. (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm14.12 | |- ( E! x ph -> A. x A. y ( ( ph /\ [. y / x ]. ph ) -> x = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo | |- ( E! x ph -> E* x ph ) |
|
| 2 | nfv | |- F/ y ph |
|
| 3 | 2 | mo3 | |- ( E* x ph <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
| 4 | sbsbc | |- ( [ y / x ] ph <-> [. y / x ]. ph ) |
|
| 5 | 4 | anbi2i | |- ( ( ph /\ [ y / x ] ph ) <-> ( ph /\ [. y / x ]. ph ) ) |
| 6 | 5 | imbi1i | |- ( ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> ( ( ph /\ [. y / x ]. ph ) -> x = y ) ) |
| 7 | 6 | 2albii | |- ( A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> A. x A. y ( ( ph /\ [. y / x ]. ph ) -> x = y ) ) |
| 8 | 3 7 | bitri | |- ( E* x ph <-> A. x A. y ( ( ph /\ [. y / x ]. ph ) -> x = y ) ) |
| 9 | 1 8 | sylib | |- ( E! x ph -> A. x A. y ( ( ph /\ [. y / x ]. ph ) -> x = y ) ) |