This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.22 in WhiteheadRussell p. 190. (Contributed by Andrew Salmon, 12-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iota4 | |- ( E! x ph -> [. ( iota x ph ) / x ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 | |- ( E! x ph <-> E. z A. x ( ph <-> x = z ) ) |
|
| 2 | biimpr | |- ( ( ph <-> x = z ) -> ( x = z -> ph ) ) |
|
| 3 | 2 | alimi | |- ( A. x ( ph <-> x = z ) -> A. x ( x = z -> ph ) ) |
| 4 | sb6 | |- ( [ z / x ] ph <-> A. x ( x = z -> ph ) ) |
|
| 5 | 3 4 | sylibr | |- ( A. x ( ph <-> x = z ) -> [ z / x ] ph ) |
| 6 | iotaval | |- ( A. x ( ph <-> x = z ) -> ( iota x ph ) = z ) |
|
| 7 | 6 | eqcomd | |- ( A. x ( ph <-> x = z ) -> z = ( iota x ph ) ) |
| 8 | dfsbcq2 | |- ( z = ( iota x ph ) -> ( [ z / x ] ph <-> [. ( iota x ph ) / x ]. ph ) ) |
|
| 9 | 7 8 | syl | |- ( A. x ( ph <-> x = z ) -> ( [ z / x ] ph <-> [. ( iota x ph ) / x ]. ph ) ) |
| 10 | 5 9 | mpbid | |- ( A. x ( ph <-> x = z ) -> [. ( iota x ph ) / x ]. ph ) |
| 11 | 10 | exlimiv | |- ( E. z A. x ( ph <-> x = z ) -> [. ( iota x ph ) / x ]. ph ) |
| 12 | 1 11 | sylbi | |- ( E! x ph -> [. ( iota x ph ) / x ]. ph ) |