This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 8.19 in Quine p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011) Remove dependency on ax-10 , ax-11 , ax-12 . (Revised by SN, 23-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotaval | |- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi | |- ( A. x ( ph <-> x = y ) -> { x | ph } = { x | x = y } ) |
|
| 2 | df-sn | |- { y } = { x | x = y } |
|
| 3 | 1 2 | eqtr4di | |- ( A. x ( ph <-> x = y ) -> { x | ph } = { y } ) |
| 4 | iotaval2 | |- ( { x | ph } = { y } -> ( iota x ph ) = y ) |
|
| 5 | 3 4 | syl | |- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y ) |