This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero times a univariate polynomial is the zero polynomial ( lmod0vs analog.) (Contributed by AV, 2-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply10s0.p | |- P = ( Poly1 ` R ) |
|
| ply10s0.b | |- B = ( Base ` P ) |
||
| ply10s0.m | |- .* = ( .s ` P ) |
||
| ply10s0.e | |- .0. = ( 0g ` R ) |
||
| Assertion | ply10s0 | |- ( ( R e. Ring /\ M e. B ) -> ( .0. .* M ) = ( 0g ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply10s0.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply10s0.b | |- B = ( Base ` P ) |
|
| 3 | ply10s0.m | |- .* = ( .s ` P ) |
|
| 4 | ply10s0.e | |- .0. = ( 0g ` R ) |
|
| 5 | 1 | ply1sca | |- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 6 | 5 | adantr | |- ( ( R e. Ring /\ M e. B ) -> R = ( Scalar ` P ) ) |
| 7 | 6 | fveq2d | |- ( ( R e. Ring /\ M e. B ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) |
| 8 | 4 7 | eqtrid | |- ( ( R e. Ring /\ M e. B ) -> .0. = ( 0g ` ( Scalar ` P ) ) ) |
| 9 | 8 | oveq1d | |- ( ( R e. Ring /\ M e. B ) -> ( .0. .* M ) = ( ( 0g ` ( Scalar ` P ) ) .* M ) ) |
| 10 | 1 | ply1lmod | |- ( R e. Ring -> P e. LMod ) |
| 11 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 12 | eqid | |- ( 0g ` ( Scalar ` P ) ) = ( 0g ` ( Scalar ` P ) ) |
|
| 13 | eqid | |- ( 0g ` P ) = ( 0g ` P ) |
|
| 14 | 2 11 3 12 13 | lmod0vs | |- ( ( P e. LMod /\ M e. B ) -> ( ( 0g ` ( Scalar ` P ) ) .* M ) = ( 0g ` P ) ) |
| 15 | 10 14 | sylan | |- ( ( R e. Ring /\ M e. B ) -> ( ( 0g ` ( Scalar ` P ) ) .* M ) = ( 0g ` P ) ) |
| 16 | 9 15 | eqtrd | |- ( ( R e. Ring /\ M e. B ) -> ( .0. .* M ) = ( 0g ` P ) ) |