This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero times a univariate polynomial is the zero polynomial ( lmod0vs analog.) (Contributed by AV, 2-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply10s0.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply10s0.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| ply10s0.m | ⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) | ||
| ply10s0.e | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | ply10s0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 0 ∗ 𝑀 ) = ( 0g ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply10s0.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply10s0.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | ply10s0.m | ⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) | |
| 4 | ply10s0.e | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | 1 | ply1sca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 7 | 6 | fveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 8 | 4 7 | eqtrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 0 ∗ 𝑀 ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∗ 𝑀 ) ) |
| 10 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 11 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 12 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) | |
| 13 | eqid | ⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) | |
| 14 | 2 11 3 12 13 | lmod0vs | ⊢ ( ( 𝑃 ∈ LMod ∧ 𝑀 ∈ 𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∗ 𝑀 ) = ( 0g ‘ 𝑃 ) ) |
| 15 | 10 14 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∗ 𝑀 ) = ( 0g ‘ 𝑃 ) ) |
| 16 | 9 15 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 0 ∗ 𝑀 ) = ( 0g ‘ 𝑃 ) ) |