This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of identity projection. Remark in Beran p. 111. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjch1 | |- ( A e. ~H -> ( ( projh ` ~H ) ` A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A e. ~H <-> if ( A e. ~H , A , 0h ) e. ~H ) ) |
|
| 2 | fveq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( projh ` ~H ) ` A ) = ( ( projh ` ~H ) ` if ( A e. ~H , A , 0h ) ) ) |
|
| 3 | id | |- ( A = if ( A e. ~H , A , 0h ) -> A = if ( A e. ~H , A , 0h ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( projh ` ~H ) ` A ) = A <-> ( ( projh ` ~H ) ` if ( A e. ~H , A , 0h ) ) = if ( A e. ~H , A , 0h ) ) ) |
| 5 | 1 4 | bibi12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A e. ~H <-> ( ( projh ` ~H ) ` A ) = A ) <-> ( if ( A e. ~H , A , 0h ) e. ~H <-> ( ( projh ` ~H ) ` if ( A e. ~H , A , 0h ) ) = if ( A e. ~H , A , 0h ) ) ) ) |
| 6 | helch | |- ~H e. CH |
|
| 7 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 8 | 6 7 | pjchi | |- ( if ( A e. ~H , A , 0h ) e. ~H <-> ( ( projh ` ~H ) ` if ( A e. ~H , A , 0h ) ) = if ( A e. ~H , A , 0h ) ) |
| 9 | 5 8 | dedth | |- ( A e. ~H -> ( A e. ~H <-> ( ( projh ` ~H ) ` A ) = A ) ) |
| 10 | 9 | ibi | |- ( A e. ~H -> ( ( projh ` ~H ) ` A ) = A ) |