This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Component of a projection. (Contributed by NM, 31-Oct-1999) (Revised by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjidm.1 | |- H e. CH |
|
| Assertion | pjcompi | |- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( A +h B ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | |- H e. CH |
|
| 2 | 1 | cheli | |- ( A e. H -> A e. ~H ) |
| 3 | 1 | choccli | |- ( _|_ ` H ) e. CH |
| 4 | 3 | cheli | |- ( B e. ( _|_ ` H ) -> B e. ~H ) |
| 5 | hvaddcl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) e. ~H ) |
|
| 6 | 2 4 5 | syl2an | |- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( A +h B ) e. ~H ) |
| 7 | axpjpj | |- ( ( H e. CH /\ ( A +h B ) e. ~H ) -> ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) ) |
|
| 8 | 1 6 7 | sylancr | |- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) ) |
| 9 | eqid | |- ( A +h B ) = ( A +h B ) |
|
| 10 | axpjcl | |- ( ( H e. CH /\ ( A +h B ) e. ~H ) -> ( ( projh ` H ) ` ( A +h B ) ) e. H ) |
|
| 11 | 1 6 10 | sylancr | |- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( A +h B ) ) e. H ) |
| 12 | axpjcl | |- ( ( ( _|_ ` H ) e. CH /\ ( A +h B ) e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) e. ( _|_ ` H ) ) |
|
| 13 | 3 6 12 | sylancr | |- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) e. ( _|_ ` H ) ) |
| 14 | simpl | |- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> A e. H ) |
|
| 15 | simpr | |- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> B e. ( _|_ ` H ) ) |
|
| 16 | 1 | chocunii | |- ( ( ( ( ( projh ` H ) ` ( A +h B ) ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) e. ( _|_ ` H ) ) /\ ( A e. H /\ B e. ( _|_ ` H ) ) ) -> ( ( ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) /\ ( A +h B ) = ( A +h B ) ) -> ( ( ( projh ` H ) ` ( A +h B ) ) = A /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) = B ) ) ) |
| 17 | 11 13 14 15 16 | syl22anc | |- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) /\ ( A +h B ) = ( A +h B ) ) -> ( ( ( projh ` H ) ` ( A +h B ) ) = A /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) = B ) ) ) |
| 18 | 9 17 | mpan2i | |- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) -> ( ( ( projh ` H ) ` ( A +h B ) ) = A /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) = B ) ) ) |
| 19 | 8 18 | mpd | |- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( ( projh ` H ) ` ( A +h B ) ) = A /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) = B ) ) |
| 20 | 19 | simpld | |- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( A +h B ) ) = A ) |