This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ifchhv

Description: Prove if ( A e. CH , A , ~H ) e. CH . (Contributed by David A. Wheeler, 8-Dec-2018) (New usage is discouraged.)

Ref Expression
Assertion ifchhv
|- if ( A e. CH , A , ~H ) e. CH

Proof

Step Hyp Ref Expression
1 helch
 |-  ~H e. CH
2 1 elimel
 |-  if ( A e. CH , A , ~H ) e. CH