This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection Theorem: Any Hilbert space vector A can be decomposed uniquely into a member x of a closed subspace H and a member y of the complement of the subspace. Theorem 3.7(i) of Beran p. 102. See pjhtheu2 for the uniqueness of y . (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjhtheu | |- ( ( H e. CH /\ A e. ~H ) -> E! x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjhth | |- ( H e. CH -> ( H +H ( _|_ ` H ) ) = ~H ) |
|
| 2 | 1 | eleq2d | |- ( H e. CH -> ( A e. ( H +H ( _|_ ` H ) ) <-> A e. ~H ) ) |
| 3 | chsh | |- ( H e. CH -> H e. SH ) |
|
| 4 | shocsh | |- ( H e. SH -> ( _|_ ` H ) e. SH ) |
|
| 5 | shsel | |- ( ( H e. SH /\ ( _|_ ` H ) e. SH ) -> ( A e. ( H +H ( _|_ ` H ) ) <-> E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) |
|
| 6 | 3 4 5 | syl2anc2 | |- ( H e. CH -> ( A e. ( H +H ( _|_ ` H ) ) <-> E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) |
| 7 | 2 6 | bitr3d | |- ( H e. CH -> ( A e. ~H <-> E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) |
| 8 | 7 | biimpa | |- ( ( H e. CH /\ A e. ~H ) -> E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) |
| 9 | 3 4 | syl | |- ( H e. CH -> ( _|_ ` H ) e. SH ) |
| 10 | ocin | |- ( H e. SH -> ( H i^i ( _|_ ` H ) ) = 0H ) |
|
| 11 | 3 10 | syl | |- ( H e. CH -> ( H i^i ( _|_ ` H ) ) = 0H ) |
| 12 | pjhthmo | |- ( ( H e. SH /\ ( _|_ ` H ) e. SH /\ ( H i^i ( _|_ ` H ) ) = 0H ) -> E* x ( x e. H /\ E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) |
|
| 13 | 3 9 11 12 | syl3anc | |- ( H e. CH -> E* x ( x e. H /\ E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) |
| 14 | 13 | adantr | |- ( ( H e. CH /\ A e. ~H ) -> E* x ( x e. H /\ E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) |
| 15 | reu5 | |- ( E! x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) <-> ( E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) /\ E* x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) |
|
| 16 | df-rmo | |- ( E* x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) <-> E* x ( x e. H /\ E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) |
|
| 17 | 16 | anbi2i | |- ( ( E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) /\ E* x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) <-> ( E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) /\ E* x ( x e. H /\ E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) ) |
| 18 | 15 17 | bitri | |- ( E! x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) <-> ( E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) /\ E* x ( x e. H /\ E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) ) |
| 19 | 8 14 18 | sylanbrc | |- ( ( H e. CH /\ A e. ~H ) -> E! x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) |