This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector decomposition into sum of projections on orthogonal subspaces. (Contributed by NM, 22-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjds3.1 | |- F e. CH |
|
| pjds3.2 | |- G e. CH |
||
| pjds3.3 | |- H e. CH |
||
| Assertion | pjds3i | |- ( ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) /\ ( F C_ ( _|_ ` H ) /\ G C_ ( _|_ ` H ) ) ) -> A = ( ( ( ( projh ` F ) ` A ) +h ( ( projh ` G ) ` A ) ) +h ( ( projh ` H ) ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjds3.1 | |- F e. CH |
|
| 2 | pjds3.2 | |- G e. CH |
|
| 3 | pjds3.3 | |- H e. CH |
|
| 4 | simpl | |- ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) -> A e. ( ( F vH G ) vH H ) ) |
|
| 5 | 3 | choccli | |- ( _|_ ` H ) e. CH |
| 6 | 1 2 5 | chlubii | |- ( ( F C_ ( _|_ ` H ) /\ G C_ ( _|_ ` H ) ) -> ( F vH G ) C_ ( _|_ ` H ) ) |
| 7 | 1 2 | chjcli | |- ( F vH G ) e. CH |
| 8 | 7 3 | pjdsi | |- ( ( A e. ( ( F vH G ) vH H ) /\ ( F vH G ) C_ ( _|_ ` H ) ) -> A = ( ( ( projh ` ( F vH G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
| 9 | 4 6 8 | syl2an | |- ( ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) /\ ( F C_ ( _|_ ` H ) /\ G C_ ( _|_ ` H ) ) ) -> A = ( ( ( projh ` ( F vH G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
| 10 | 1 2 | osumi | |- ( F C_ ( _|_ ` G ) -> ( F +H G ) = ( F vH G ) ) |
| 11 | 10 | fveq2d | |- ( F C_ ( _|_ ` G ) -> ( projh ` ( F +H G ) ) = ( projh ` ( F vH G ) ) ) |
| 12 | 11 | fveq1d | |- ( F C_ ( _|_ ` G ) -> ( ( projh ` ( F +H G ) ) ` A ) = ( ( projh ` ( F vH G ) ) ` A ) ) |
| 13 | 12 | oveq1d | |- ( F C_ ( _|_ ` G ) -> ( ( ( projh ` ( F +H G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( projh ` ( F vH G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
| 14 | 13 | ad2antlr | |- ( ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) /\ ( F C_ ( _|_ ` H ) /\ G C_ ( _|_ ` H ) ) ) -> ( ( ( projh ` ( F +H G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( projh ` ( F vH G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
| 15 | 7 3 | chjcli | |- ( ( F vH G ) vH H ) e. CH |
| 16 | 15 | cheli | |- ( A e. ( ( F vH G ) vH H ) -> A e. ~H ) |
| 17 | 1 2 | pjsumi | |- ( A e. ~H -> ( F C_ ( _|_ ` G ) -> ( ( projh ` ( F +H G ) ) ` A ) = ( ( ( projh ` F ) ` A ) +h ( ( projh ` G ) ` A ) ) ) ) |
| 18 | 17 | imp | |- ( ( A e. ~H /\ F C_ ( _|_ ` G ) ) -> ( ( projh ` ( F +H G ) ) ` A ) = ( ( ( projh ` F ) ` A ) +h ( ( projh ` G ) ` A ) ) ) |
| 19 | 16 18 | sylan | |- ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) -> ( ( projh ` ( F +H G ) ) ` A ) = ( ( ( projh ` F ) ` A ) +h ( ( projh ` G ) ` A ) ) ) |
| 20 | 19 | oveq1d | |- ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) -> ( ( ( projh ` ( F +H G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( ( projh ` F ) ` A ) +h ( ( projh ` G ) ` A ) ) +h ( ( projh ` H ) ` A ) ) ) |
| 21 | 20 | adantr | |- ( ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) /\ ( F C_ ( _|_ ` H ) /\ G C_ ( _|_ ` H ) ) ) -> ( ( ( projh ` ( F +H G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( ( projh ` F ) ` A ) +h ( ( projh ` G ) ` A ) ) +h ( ( projh ` H ) ` A ) ) ) |
| 22 | 9 14 21 | 3eqtr2d | |- ( ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) /\ ( F C_ ( _|_ ` H ) /\ G C_ ( _|_ ` H ) ) ) -> A = ( ( ( ( projh ` F ) ` A ) +h ( ( projh ` G ) ` A ) ) +h ( ( projh ` H ) ` A ) ) ) |