This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One-to-one correspondence of projection and subspace. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pj11 | |- ( ( G e. CH /\ H e. CH ) -> ( ( projh ` G ) = ( projh ` H ) <-> G = H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 | |- ( G = if ( G e. CH , G , 0H ) -> ( ( projh ` G ) = ( projh ` H ) <-> ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` H ) ) ) |
|
| 2 | eqeq1 | |- ( G = if ( G e. CH , G , 0H ) -> ( G = H <-> if ( G e. CH , G , 0H ) = H ) ) |
|
| 3 | 1 2 | bibi12d | |- ( G = if ( G e. CH , G , 0H ) -> ( ( ( projh ` G ) = ( projh ` H ) <-> G = H ) <-> ( ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` H ) <-> if ( G e. CH , G , 0H ) = H ) ) ) |
| 4 | fveq2 | |- ( H = if ( H e. CH , H , 0H ) -> ( projh ` H ) = ( projh ` if ( H e. CH , H , 0H ) ) ) |
|
| 5 | 4 | eqeq2d | |- ( H = if ( H e. CH , H , 0H ) -> ( ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` H ) <-> ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` if ( H e. CH , H , 0H ) ) ) ) |
| 6 | eqeq2 | |- ( H = if ( H e. CH , H , 0H ) -> ( if ( G e. CH , G , 0H ) = H <-> if ( G e. CH , G , 0H ) = if ( H e. CH , H , 0H ) ) ) |
|
| 7 | 5 6 | bibi12d | |- ( H = if ( H e. CH , H , 0H ) -> ( ( ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` H ) <-> if ( G e. CH , G , 0H ) = H ) <-> ( ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` if ( H e. CH , H , 0H ) ) <-> if ( G e. CH , G , 0H ) = if ( H e. CH , H , 0H ) ) ) ) |
| 8 | h0elch | |- 0H e. CH |
|
| 9 | 8 | elimel | |- if ( G e. CH , G , 0H ) e. CH |
| 10 | 8 | elimel | |- if ( H e. CH , H , 0H ) e. CH |
| 11 | 9 10 | pj11i | |- ( ( projh ` if ( G e. CH , G , 0H ) ) = ( projh ` if ( H e. CH , H , 0H ) ) <-> if ( G e. CH , G , 0H ) = if ( H e. CH , H , 0H ) ) |
| 12 | 3 7 11 | dedth2h | |- ( ( G e. CH /\ H e. CH ) -> ( ( projh ` G ) = ( projh ` H ) <-> G = H ) ) |