This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjsumt.1 | |- G e. CH |
|
| pjsumt.2 | |- H e. CH |
||
| Assertion | pjsumi | |- ( A e. ~H -> ( G C_ ( _|_ ` H ) -> ( ( projh ` ( G +H H ) ) ` A ) = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjsumt.1 | |- G e. CH |
|
| 2 | pjsumt.2 | |- H e. CH |
|
| 3 | 1 2 | osumi | |- ( G C_ ( _|_ ` H ) -> ( G +H H ) = ( G vH H ) ) |
| 4 | 3 | fveq2d | |- ( G C_ ( _|_ ` H ) -> ( projh ` ( G +H H ) ) = ( projh ` ( G vH H ) ) ) |
| 5 | 4 | fveq1d | |- ( G C_ ( _|_ ` H ) -> ( ( projh ` ( G +H H ) ) ` A ) = ( ( projh ` ( G vH H ) ) ` A ) ) |
| 6 | 5 | adantl | |- ( ( A e. ~H /\ G C_ ( _|_ ` H ) ) -> ( ( projh ` ( G +H H ) ) ` A ) = ( ( projh ` ( G vH H ) ) ` A ) ) |
| 7 | pjcjt2 | |- ( ( G e. CH /\ H e. CH /\ A e. ~H ) -> ( G C_ ( _|_ ` H ) -> ( ( projh ` ( G vH H ) ) ` A ) = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) ) |
|
| 8 | 1 2 7 | mp3an12 | |- ( A e. ~H -> ( G C_ ( _|_ ` H ) -> ( ( projh ` ( G vH H ) ) ` A ) = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) ) |
| 9 | 8 | imp | |- ( ( A e. ~H /\ G C_ ( _|_ ` H ) ) -> ( ( projh ` ( G vH H ) ) ` A ) = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
| 10 | 6 9 | eqtrd | |- ( ( A e. ~H /\ G C_ ( _|_ ` H ) ) -> ( ( projh ` ( G +H H ) ) ` A ) = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
| 11 | 10 | ex | |- ( A e. ~H -> ( G C_ ( _|_ ` H ) -> ( ( projh ` ( G +H H ) ) ` A ) = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) ) |