This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector decomposition into sum of projections on orthogonal subspaces. (Contributed by NM, 22-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjds3.1 | ⊢ 𝐹 ∈ Cℋ | |
| pjds3.2 | ⊢ 𝐺 ∈ Cℋ | ||
| pjds3.3 | ⊢ 𝐻 ∈ Cℋ | ||
| Assertion | pjds3i | ⊢ ( ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → 𝐴 = ( ( ( ( projℎ ‘ 𝐹 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjds3.1 | ⊢ 𝐹 ∈ Cℋ | |
| 2 | pjds3.2 | ⊢ 𝐺 ∈ Cℋ | |
| 3 | pjds3.3 | ⊢ 𝐻 ∈ Cℋ | |
| 4 | simpl | ⊢ ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) → 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ) | |
| 5 | 3 | choccli | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 6 | 1 2 5 | chlubii | ⊢ ( ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( 𝐹 ∨ℋ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) ) |
| 7 | 1 2 | chjcli | ⊢ ( 𝐹 ∨ℋ 𝐺 ) ∈ Cℋ |
| 8 | 7 3 | pjdsi | ⊢ ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ ( 𝐹 ∨ℋ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) ) → 𝐴 = ( ( ( projℎ ‘ ( 𝐹 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 9 | 4 6 8 | syl2an | ⊢ ( ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → 𝐴 = ( ( ( projℎ ‘ ( 𝐹 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 10 | 1 2 | osumi | ⊢ ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( 𝐹 +ℋ 𝐺 ) = ( 𝐹 ∨ℋ 𝐺 ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) = ( projℎ ‘ ( 𝐹 ∨ℋ 𝐺 ) ) ) |
| 12 | 11 | fveq1d | ⊢ ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ ( 𝐹 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) ) |
| 13 | 12 | oveq1d | ⊢ ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ ( 𝐹 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 14 | 13 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ ( 𝐹 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 15 | 7 3 | chjcli | ⊢ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∈ Cℋ |
| 16 | 15 | cheli | ⊢ ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) → 𝐴 ∈ ℋ ) |
| 17 | 1 2 | pjsumi | ⊢ ( 𝐴 ∈ ℋ → ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐹 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) ) |
| 18 | 17 | imp | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) → ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐹 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 19 | 16 18 | sylan | ⊢ ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) → ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐹 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 20 | 19 | oveq1d | ⊢ ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) → ( ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( ( ( projℎ ‘ 𝐹 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( ( ( projℎ ‘ 𝐹 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 22 | 9 14 21 | 3eqtr2d | ⊢ ( ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → 𝐴 = ( ( ( ( projℎ ‘ 𝐹 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |