This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector decomposition into sum of projections on orthogonal subspaces. (Contributed by NM, 21-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjsumt.1 | |- G e. CH |
|
| pjsumt.2 | |- H e. CH |
||
| Assertion | pjdsi | |- ( ( A e. ( G vH H ) /\ G C_ ( _|_ ` H ) ) -> A = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjsumt.1 | |- G e. CH |
|
| 2 | pjsumt.2 | |- H e. CH |
|
| 3 | 1 2 | osumi | |- ( G C_ ( _|_ ` H ) -> ( G +H H ) = ( G vH H ) ) |
| 4 | 3 | fveq2d | |- ( G C_ ( _|_ ` H ) -> ( projh ` ( G +H H ) ) = ( projh ` ( G vH H ) ) ) |
| 5 | 4 | fveq1d | |- ( G C_ ( _|_ ` H ) -> ( ( projh ` ( G +H H ) ) ` A ) = ( ( projh ` ( G vH H ) ) ` A ) ) |
| 6 | 1 2 | chjcli | |- ( G vH H ) e. CH |
| 7 | pjid | |- ( ( ( G vH H ) e. CH /\ A e. ( G vH H ) ) -> ( ( projh ` ( G vH H ) ) ` A ) = A ) |
|
| 8 | 6 7 | mpan | |- ( A e. ( G vH H ) -> ( ( projh ` ( G vH H ) ) ` A ) = A ) |
| 9 | 5 8 | sylan9eqr | |- ( ( A e. ( G vH H ) /\ G C_ ( _|_ ` H ) ) -> ( ( projh ` ( G +H H ) ) ` A ) = A ) |
| 10 | 6 | cheli | |- ( A e. ( G vH H ) -> A e. ~H ) |
| 11 | 1 2 | pjsumi | |- ( A e. ~H -> ( G C_ ( _|_ ` H ) -> ( ( projh ` ( G +H H ) ) ` A ) = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) ) |
| 12 | 11 | imp | |- ( ( A e. ~H /\ G C_ ( _|_ ` H ) ) -> ( ( projh ` ( G +H H ) ) ` A ) = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
| 13 | 10 12 | sylan | |- ( ( A e. ( G vH H ) /\ G C_ ( _|_ ` H ) ) -> ( ( projh ` ( G +H H ) ) ` A ) = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
| 14 | 9 13 | eqtr3d | |- ( ( A e. ( G vH H ) /\ G C_ ( _|_ ` H ) ) -> A = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |