This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prefix of an empty set is always the empty set. (Contributed by AV, 3-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfx0 | |- ( (/) prefix L ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp | |- ( <. (/) , L >. e. ( _V X. NN0 ) <-> ( (/) e. _V /\ L e. NN0 ) ) |
|
| 2 | pfxval | |- ( ( (/) e. _V /\ L e. NN0 ) -> ( (/) prefix L ) = ( (/) substr <. 0 , L >. ) ) |
|
| 3 | swrd0 | |- ( (/) substr <. 0 , L >. ) = (/) |
|
| 4 | 2 3 | eqtrdi | |- ( ( (/) e. _V /\ L e. NN0 ) -> ( (/) prefix L ) = (/) ) |
| 5 | 1 4 | sylbi | |- ( <. (/) , L >. e. ( _V X. NN0 ) -> ( (/) prefix L ) = (/) ) |
| 6 | df-pfx | |- prefix = ( s e. _V , l e. NN0 |-> ( s substr <. 0 , l >. ) ) |
|
| 7 | ovex | |- ( s substr <. 0 , l >. ) e. _V |
|
| 8 | 6 7 | dmmpo | |- dom prefix = ( _V X. NN0 ) |
| 9 | 5 8 | eleq2s | |- ( <. (/) , L >. e. dom prefix -> ( (/) prefix L ) = (/) ) |
| 10 | df-ov | |- ( (/) prefix L ) = ( prefix ` <. (/) , L >. ) |
|
| 11 | ndmfv | |- ( -. <. (/) , L >. e. dom prefix -> ( prefix ` <. (/) , L >. ) = (/) ) |
|
| 12 | 10 11 | eqtrid | |- ( -. <. (/) , L >. e. dom prefix -> ( (/) prefix L ) = (/) ) |
| 13 | 9 12 | pm2.61i | |- ( (/) prefix L ) = (/) |