This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prefix of an empty set is always the empty set. (Contributed by AV, 3-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfx0 | ⊢ ( ∅ prefix 𝐿 ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp | ⊢ ( 〈 ∅ , 𝐿 〉 ∈ ( V × ℕ0 ) ↔ ( ∅ ∈ V ∧ 𝐿 ∈ ℕ0 ) ) | |
| 2 | pfxval | ⊢ ( ( ∅ ∈ V ∧ 𝐿 ∈ ℕ0 ) → ( ∅ prefix 𝐿 ) = ( ∅ substr 〈 0 , 𝐿 〉 ) ) | |
| 3 | swrd0 | ⊢ ( ∅ substr 〈 0 , 𝐿 〉 ) = ∅ | |
| 4 | 2 3 | eqtrdi | ⊢ ( ( ∅ ∈ V ∧ 𝐿 ∈ ℕ0 ) → ( ∅ prefix 𝐿 ) = ∅ ) |
| 5 | 1 4 | sylbi | ⊢ ( 〈 ∅ , 𝐿 〉 ∈ ( V × ℕ0 ) → ( ∅ prefix 𝐿 ) = ∅ ) |
| 6 | df-pfx | ⊢ prefix = ( 𝑠 ∈ V , 𝑙 ∈ ℕ0 ↦ ( 𝑠 substr 〈 0 , 𝑙 〉 ) ) | |
| 7 | ovex | ⊢ ( 𝑠 substr 〈 0 , 𝑙 〉 ) ∈ V | |
| 8 | 6 7 | dmmpo | ⊢ dom prefix = ( V × ℕ0 ) |
| 9 | 5 8 | eleq2s | ⊢ ( 〈 ∅ , 𝐿 〉 ∈ dom prefix → ( ∅ prefix 𝐿 ) = ∅ ) |
| 10 | df-ov | ⊢ ( ∅ prefix 𝐿 ) = ( prefix ‘ 〈 ∅ , 𝐿 〉 ) | |
| 11 | ndmfv | ⊢ ( ¬ 〈 ∅ , 𝐿 〉 ∈ dom prefix → ( prefix ‘ 〈 ∅ , 𝐿 〉 ) = ∅ ) | |
| 12 | 10 11 | eqtrid | ⊢ ( ¬ 〈 ∅ , 𝐿 〉 ∈ dom prefix → ( ∅ prefix 𝐿 ) = ∅ ) |
| 13 | 9 12 | pm2.61i | ⊢ ( ∅ prefix 𝐿 ) = ∅ |