This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a prefix operation. This theorem should only be used in proofs if L e. NN0 is not available. Otherwise (and usually), pfxval should be used. (Contributed by AV, 3-Dec-2022) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxval0 | |- ( S e. Word A -> ( S prefix L ) = ( S substr <. 0 , L >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pfxval | |- ( ( S e. Word A /\ L e. NN0 ) -> ( S prefix L ) = ( S substr <. 0 , L >. ) ) |
|
| 2 | simpr | |- ( ( S e. _V /\ L e. NN0 ) -> L e. NN0 ) |
|
| 3 | 2 | con3i | |- ( -. L e. NN0 -> -. ( S e. _V /\ L e. NN0 ) ) |
| 4 | 3 | adantl | |- ( ( S e. Word A /\ -. L e. NN0 ) -> -. ( S e. _V /\ L e. NN0 ) ) |
| 5 | pfxnndmnd | |- ( -. ( S e. _V /\ L e. NN0 ) -> ( S prefix L ) = (/) ) |
|
| 6 | 4 5 | syl | |- ( ( S e. Word A /\ -. L e. NN0 ) -> ( S prefix L ) = (/) ) |
| 7 | simpr | |- ( ( 0 e. NN0 /\ L e. NN0 ) -> L e. NN0 ) |
|
| 8 | 7 | con3i | |- ( -. L e. NN0 -> -. ( 0 e. NN0 /\ L e. NN0 ) ) |
| 9 | swrdnnn0nd | |- ( ( S e. Word A /\ -. ( 0 e. NN0 /\ L e. NN0 ) ) -> ( S substr <. 0 , L >. ) = (/) ) |
|
| 10 | 8 9 | sylan2 | |- ( ( S e. Word A /\ -. L e. NN0 ) -> ( S substr <. 0 , L >. ) = (/) ) |
| 11 | 6 10 | eqtr4d | |- ( ( S e. Word A /\ -. L e. NN0 ) -> ( S prefix L ) = ( S substr <. 0 , L >. ) ) |
| 12 | 1 11 | pm2.61dan | |- ( S e. Word A -> ( S prefix L ) = ( S substr <. 0 , L >. ) ) |