This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the prime count function, which returns the largest exponent of a given prime (or other positive integer) that divides the number. For rational numbers, it returns negative values according to the power of a prime in the denominator. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pc | |- pCnt = ( p e. Prime , r e. QQ |-> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpc | |- pCnt |
|
| 1 | vp | |- p |
|
| 2 | cprime | |- Prime |
|
| 3 | vr | |- r |
|
| 4 | cq | ||
| 5 | 3 | cv | |- r |
| 6 | cc0 | |- 0 |
|
| 7 | 5 6 | wceq | |- r = 0 |
| 8 | cpnf | |- +oo |
|
| 9 | vz | |- z |
|
| 10 | vx | |- x |
|
| 11 | cz | |- ZZ |
|
| 12 | vy | |- y |
|
| 13 | cn | |- NN |
|
| 14 | 10 | cv | |- x |
| 15 | cdiv | |- / |
|
| 16 | 12 | cv | |- y |
| 17 | 14 16 15 | co | |- ( x / y ) |
| 18 | 5 17 | wceq | |- r = ( x / y ) |
| 19 | 9 | cv | |- z |
| 20 | vn | |- n |
|
| 21 | cn0 | |- NN0 |
|
| 22 | 1 | cv | |- p |
| 23 | cexp | |- ^ |
|
| 24 | 20 | cv | |- n |
| 25 | 22 24 23 | co | |- ( p ^ n ) |
| 26 | cdvds | |- || |
|
| 27 | 25 14 26 | wbr | |- ( p ^ n ) || x |
| 28 | 27 20 21 | crab | |- { n e. NN0 | ( p ^ n ) || x } |
| 29 | cr | |- RR |
|
| 30 | clt | |- < |
|
| 31 | 28 29 30 | csup | |- sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) |
| 32 | cmin | |- - |
|
| 33 | 25 16 26 | wbr | |- ( p ^ n ) || y |
| 34 | 33 20 21 | crab | |- { n e. NN0 | ( p ^ n ) || y } |
| 35 | 34 29 30 | csup | |- sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) |
| 36 | 31 35 32 | co | |- ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) |
| 37 | 19 36 | wceq | |- z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) |
| 38 | 18 37 | wa | |- ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) |
| 39 | 38 12 13 | wrex | |- E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) |
| 40 | 39 10 11 | wrex | |- E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) |
| 41 | 40 9 | cio | |- ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) |
| 42 | 7 8 41 | cif | |- if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) |
| 43 | 1 3 2 4 42 | cmpo | |- ( p e. Prime , r e. QQ |-> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) ) |
| 44 | 0 43 | wceq | |- pCnt = ( p e. Prime , r e. QQ |-> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) ) |