This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Defining property of the prime count function. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pczndvds | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) |
|
| 2 | 1 | pczpre | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) |
| 3 | 2 | oveq1d | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P pCnt N ) + 1 ) = ( sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) + 1 ) ) |
| 4 | 3 | oveq2d | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) = ( P ^ ( sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) + 1 ) ) ) |
| 5 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 6 | eqid | |- { n e. NN0 | ( P ^ n ) || N } = { n e. NN0 | ( P ^ n ) || N } |
|
| 7 | 6 1 | pcprendvds | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) + 1 ) ) || N ) |
| 8 | 5 7 | sylan | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) + 1 ) ) || N ) |
| 9 | 4 8 | eqnbrtrd | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) |