This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for paddass . The case when at least one sum argument is empty. (Contributed by NM, 12-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddass.a | |- A = ( Atoms ` K ) |
|
| paddass.p | |- .+ = ( +P ` K ) |
||
| Assertion | paddasslem17 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ -. ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddass.a | |- A = ( Atoms ` K ) |
|
| 2 | paddass.p | |- .+ = ( +P ` K ) |
|
| 3 | ianor | |- ( -. ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) <-> ( -. ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) \/ -. ( Y =/= (/) /\ Z =/= (/) ) ) ) |
|
| 4 | ianor | |- ( -. ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) <-> ( -. X =/= (/) \/ -. ( Y .+ Z ) =/= (/) ) ) |
|
| 5 | nne | |- ( -. X =/= (/) <-> X = (/) ) |
|
| 6 | nne | |- ( -. ( Y .+ Z ) =/= (/) <-> ( Y .+ Z ) = (/) ) |
|
| 7 | 5 6 | orbi12i | |- ( ( -. X =/= (/) \/ -. ( Y .+ Z ) =/= (/) ) <-> ( X = (/) \/ ( Y .+ Z ) = (/) ) ) |
| 8 | 4 7 | bitri | |- ( -. ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) <-> ( X = (/) \/ ( Y .+ Z ) = (/) ) ) |
| 9 | ianor | |- ( -. ( Y =/= (/) /\ Z =/= (/) ) <-> ( -. Y =/= (/) \/ -. Z =/= (/) ) ) |
|
| 10 | nne | |- ( -. Y =/= (/) <-> Y = (/) ) |
|
| 11 | nne | |- ( -. Z =/= (/) <-> Z = (/) ) |
|
| 12 | 10 11 | orbi12i | |- ( ( -. Y =/= (/) \/ -. Z =/= (/) ) <-> ( Y = (/) \/ Z = (/) ) ) |
| 13 | 9 12 | bitri | |- ( -. ( Y =/= (/) /\ Z =/= (/) ) <-> ( Y = (/) \/ Z = (/) ) ) |
| 14 | 8 13 | orbi12i | |- ( ( -. ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) \/ -. ( Y =/= (/) /\ Z =/= (/) ) ) <-> ( ( X = (/) \/ ( Y .+ Z ) = (/) ) \/ ( Y = (/) \/ Z = (/) ) ) ) |
| 15 | 3 14 | bitri | |- ( -. ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) <-> ( ( X = (/) \/ ( Y .+ Z ) = (/) ) \/ ( Y = (/) \/ Z = (/) ) ) ) |
| 16 | 1 2 | paddssat | |- ( ( K e. HL /\ Y C_ A /\ Z C_ A ) -> ( Y .+ Z ) C_ A ) |
| 17 | 16 | 3adant3r1 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Y .+ Z ) C_ A ) |
| 18 | 1 2 | padd02 | |- ( ( K e. HL /\ ( Y .+ Z ) C_ A ) -> ( (/) .+ ( Y .+ Z ) ) = ( Y .+ Z ) ) |
| 19 | 17 18 | syldan | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( (/) .+ ( Y .+ Z ) ) = ( Y .+ Z ) ) |
| 20 | 1 2 | padd02 | |- ( ( K e. HL /\ Y C_ A ) -> ( (/) .+ Y ) = Y ) |
| 21 | 20 | 3ad2antr2 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( (/) .+ Y ) = Y ) |
| 22 | 21 | oveq1d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( (/) .+ Y ) .+ Z ) = ( Y .+ Z ) ) |
| 23 | 19 22 | eqtr4d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( (/) .+ ( Y .+ Z ) ) = ( ( (/) .+ Y ) .+ Z ) ) |
| 24 | oveq1 | |- ( X = (/) -> ( X .+ ( Y .+ Z ) ) = ( (/) .+ ( Y .+ Z ) ) ) |
|
| 25 | oveq1 | |- ( X = (/) -> ( X .+ Y ) = ( (/) .+ Y ) ) |
|
| 26 | 25 | oveq1d | |- ( X = (/) -> ( ( X .+ Y ) .+ Z ) = ( ( (/) .+ Y ) .+ Z ) ) |
| 27 | 24 26 | eqeq12d | |- ( X = (/) -> ( ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) <-> ( (/) .+ ( Y .+ Z ) ) = ( ( (/) .+ Y ) .+ Z ) ) ) |
| 28 | 23 27 | syl5ibrcom | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X = (/) -> ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) ) ) |
| 29 | eqimss | |- ( ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
|
| 30 | 28 29 | syl6 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X = (/) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
| 31 | 1 2 | padd01 | |- ( ( K e. HL /\ X C_ A ) -> ( X .+ (/) ) = X ) |
| 32 | 31 | 3ad2antr1 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ (/) ) = X ) |
| 33 | 1 2 | sspadd1 | |- ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> X C_ ( X .+ Y ) ) |
| 34 | 33 | 3adant3r3 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> X C_ ( X .+ Y ) ) |
| 35 | simpl | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> K e. HL ) |
|
| 36 | 1 2 | paddssat | |- ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) C_ A ) |
| 37 | 36 | 3adant3r3 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ Y ) C_ A ) |
| 38 | simpr3 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Z C_ A ) |
|
| 39 | 1 2 | sspadd1 | |- ( ( K e. HL /\ ( X .+ Y ) C_ A /\ Z C_ A ) -> ( X .+ Y ) C_ ( ( X .+ Y ) .+ Z ) ) |
| 40 | 35 37 38 39 | syl3anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ Y ) C_ ( ( X .+ Y ) .+ Z ) ) |
| 41 | 34 40 | sstrd | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> X C_ ( ( X .+ Y ) .+ Z ) ) |
| 42 | 32 41 | eqsstrd | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ (/) ) C_ ( ( X .+ Y ) .+ Z ) ) |
| 43 | oveq2 | |- ( ( Y .+ Z ) = (/) -> ( X .+ ( Y .+ Z ) ) = ( X .+ (/) ) ) |
|
| 44 | 43 | sseq1d | |- ( ( Y .+ Z ) = (/) -> ( ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) <-> ( X .+ (/) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
| 45 | 42 44 | syl5ibrcom | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( Y .+ Z ) = (/) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
| 46 | 30 45 | jaod | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X = (/) \/ ( Y .+ Z ) = (/) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
| 47 | 1 2 | padd02 | |- ( ( K e. HL /\ Z C_ A ) -> ( (/) .+ Z ) = Z ) |
| 48 | 47 | 3ad2antr3 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( (/) .+ Z ) = Z ) |
| 49 | 48 | oveq2d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( (/) .+ Z ) ) = ( X .+ Z ) ) |
| 50 | 32 | oveq1d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ (/) ) .+ Z ) = ( X .+ Z ) ) |
| 51 | 49 50 | eqtr4d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( (/) .+ Z ) ) = ( ( X .+ (/) ) .+ Z ) ) |
| 52 | oveq1 | |- ( Y = (/) -> ( Y .+ Z ) = ( (/) .+ Z ) ) |
|
| 53 | 52 | oveq2d | |- ( Y = (/) -> ( X .+ ( Y .+ Z ) ) = ( X .+ ( (/) .+ Z ) ) ) |
| 54 | oveq2 | |- ( Y = (/) -> ( X .+ Y ) = ( X .+ (/) ) ) |
|
| 55 | 54 | oveq1d | |- ( Y = (/) -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ (/) ) .+ Z ) ) |
| 56 | 53 55 | eqeq12d | |- ( Y = (/) -> ( ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) <-> ( X .+ ( (/) .+ Z ) ) = ( ( X .+ (/) ) .+ Z ) ) ) |
| 57 | 51 56 | syl5ibrcom | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Y = (/) -> ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) ) ) |
| 58 | 1 2 | padd01 | |- ( ( K e. HL /\ Y C_ A ) -> ( Y .+ (/) ) = Y ) |
| 59 | 58 | 3ad2antr2 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Y .+ (/) ) = Y ) |
| 60 | 59 | oveq2d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ (/) ) ) = ( X .+ Y ) ) |
| 61 | 1 2 | padd01 | |- ( ( K e. HL /\ ( X .+ Y ) C_ A ) -> ( ( X .+ Y ) .+ (/) ) = ( X .+ Y ) ) |
| 62 | 37 61 | syldan | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ (/) ) = ( X .+ Y ) ) |
| 63 | 60 62 | eqtr4d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ (/) ) ) = ( ( X .+ Y ) .+ (/) ) ) |
| 64 | oveq2 | |- ( Z = (/) -> ( Y .+ Z ) = ( Y .+ (/) ) ) |
|
| 65 | 64 | oveq2d | |- ( Z = (/) -> ( X .+ ( Y .+ Z ) ) = ( X .+ ( Y .+ (/) ) ) ) |
| 66 | oveq2 | |- ( Z = (/) -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ Y ) .+ (/) ) ) |
|
| 67 | 65 66 | eqeq12d | |- ( Z = (/) -> ( ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) <-> ( X .+ ( Y .+ (/) ) ) = ( ( X .+ Y ) .+ (/) ) ) ) |
| 68 | 63 67 | syl5ibrcom | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Z = (/) -> ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) ) ) |
| 69 | 57 68 | jaod | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( Y = (/) \/ Z = (/) ) -> ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) ) ) |
| 70 | 69 29 | syl6 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( Y = (/) \/ Z = (/) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
| 71 | 46 70 | jaod | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( ( X = (/) \/ ( Y .+ Z ) = (/) ) \/ ( Y = (/) \/ Z = (/) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
| 72 | 15 71 | biimtrid | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( -. ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
| 73 | 72 | 3impia | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ -. ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |