This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for paddass . Combine paddasslem16 and paddasslem17 . (Contributed by NM, 12-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddass.a | |- A = ( Atoms ` K ) |
|
| paddass.p | |- .+ = ( +P ` K ) |
||
| Assertion | paddasslem18 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddass.a | |- A = ( Atoms ` K ) |
|
| 2 | paddass.p | |- .+ = ( +P ` K ) |
|
| 3 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 4 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 5 | 3 4 1 2 | paddasslem16 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
| 6 | 5 | 3expa | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
| 7 | 1 2 | paddasslem17 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ -. ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
| 8 | 7 | 3expa | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ -. ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
| 9 | 6 8 | pm2.61dan | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |