This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | padd0.a | |- A = ( Atoms ` K ) |
|
| padd0.p | |- .+ = ( +P ` K ) |
||
| Assertion | paddssat | |- ( ( K e. B /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | padd0.a | |- A = ( Atoms ` K ) |
|
| 2 | padd0.p | |- .+ = ( +P ` K ) |
|
| 3 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 4 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 5 | 3 4 1 2 | paddval | |- ( ( K e. B /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) = ( ( X u. Y ) u. { p e. A | E. q e. X E. r e. Y p ( le ` K ) ( q ( join ` K ) r ) } ) ) |
| 6 | unss | |- ( ( X C_ A /\ Y C_ A ) <-> ( X u. Y ) C_ A ) |
|
| 7 | 6 | biimpi | |- ( ( X C_ A /\ Y C_ A ) -> ( X u. Y ) C_ A ) |
| 8 | ssrab2 | |- { p e. A | E. q e. X E. r e. Y p ( le ` K ) ( q ( join ` K ) r ) } C_ A |
|
| 9 | 7 8 | jctir | |- ( ( X C_ A /\ Y C_ A ) -> ( ( X u. Y ) C_ A /\ { p e. A | E. q e. X E. r e. Y p ( le ` K ) ( q ( join ` K ) r ) } C_ A ) ) |
| 10 | unss | |- ( ( ( X u. Y ) C_ A /\ { p e. A | E. q e. X E. r e. Y p ( le ` K ) ( q ( join ` K ) r ) } C_ A ) <-> ( ( X u. Y ) u. { p e. A | E. q e. X E. r e. Y p ( le ` K ) ( q ( join ` K ) r ) } ) C_ A ) |
|
| 11 | 9 10 | sylib | |- ( ( X C_ A /\ Y C_ A ) -> ( ( X u. Y ) u. { p e. A | E. q e. X E. r e. Y p ( le ` K ) ( q ( join ` K ) r ) } ) C_ A ) |
| 12 | 11 | 3adant1 | |- ( ( K e. B /\ X C_ A /\ Y C_ A ) -> ( ( X u. Y ) u. { p e. A | E. q e. X E. r e. Y p ( le ` K ) ( q ( join ` K ) r ) } ) C_ A ) |
| 13 | 5 12 | eqsstrd | |- ( ( K e. B /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) C_ A ) |