This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for paddass . Use elpaddn0 to eliminate x and r from paddasslem15 . (Contributed by NM, 11-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddasslem.l | |- .<_ = ( le ` K ) |
|
| paddasslem.j | |- .\/ = ( join ` K ) |
||
| paddasslem.a | |- A = ( Atoms ` K ) |
||
| paddasslem.p | |- .+ = ( +P ` K ) |
||
| Assertion | paddasslem16 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddasslem.l | |- .<_ = ( le ` K ) |
|
| 2 | paddasslem.j | |- .\/ = ( join ` K ) |
|
| 3 | paddasslem.a | |- A = ( Atoms ` K ) |
|
| 4 | paddasslem.p | |- .+ = ( +P ` K ) |
|
| 5 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> K e. Lat ) |
| 7 | simp21 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> X C_ A ) |
|
| 8 | simp1 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> K e. HL ) |
|
| 9 | simp22 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> Y C_ A ) |
|
| 10 | simp23 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> Z C_ A ) |
|
| 11 | 3 4 | paddssat | |- ( ( K e. HL /\ Y C_ A /\ Z C_ A ) -> ( Y .+ Z ) C_ A ) |
| 12 | 8 9 10 11 | syl3anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( Y .+ Z ) C_ A ) |
| 13 | simp3l | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) ) |
|
| 14 | 1 2 3 4 | elpaddn0 | |- ( ( ( K e. Lat /\ X C_ A /\ ( Y .+ Z ) C_ A ) /\ ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) ) -> ( p e. ( X .+ ( Y .+ Z ) ) <-> ( p e. A /\ E. x e. X E. r e. ( Y .+ Z ) p .<_ ( x .\/ r ) ) ) ) |
| 15 | 6 7 12 13 14 | syl31anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( p e. ( X .+ ( Y .+ Z ) ) <-> ( p e. A /\ E. x e. X E. r e. ( Y .+ Z ) p .<_ ( x .\/ r ) ) ) ) |
| 16 | simpr | |- ( ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) -> ( Y =/= (/) /\ Z =/= (/) ) ) |
|
| 17 | 1 2 3 4 | paddasslem15 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) |
| 18 | 16 17 | syl3anl3 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) |
| 19 | 18 | 3exp2 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( p e. A -> ( ( x e. X /\ r e. ( Y .+ Z ) ) -> ( p .<_ ( x .\/ r ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) ) ) |
| 20 | 19 | imp | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) /\ p e. A ) -> ( ( x e. X /\ r e. ( Y .+ Z ) ) -> ( p .<_ ( x .\/ r ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) ) |
| 21 | 20 | rexlimdvv | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) /\ p e. A ) -> ( E. x e. X E. r e. ( Y .+ Z ) p .<_ ( x .\/ r ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) |
| 22 | 21 | expimpd | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( ( p e. A /\ E. x e. X E. r e. ( Y .+ Z ) p .<_ ( x .\/ r ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) |
| 23 | 15 22 | sylbid | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( p e. ( X .+ ( Y .+ Z ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) |
| 24 | 23 | ssrdv | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |