This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for paddass . Use elpaddn0 to eliminate y and z from paddasslem14 . (Contributed by NM, 11-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddasslem.l | |- .<_ = ( le ` K ) |
|
| paddasslem.j | |- .\/ = ( join ` K ) |
||
| paddasslem.a | |- A = ( Atoms ` K ) |
||
| paddasslem.p | |- .+ = ( +P ` K ) |
||
| Assertion | paddasslem15 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddasslem.l | |- .<_ = ( le ` K ) |
|
| 2 | paddasslem.j | |- .\/ = ( join ` K ) |
|
| 3 | paddasslem.a | |- A = ( Atoms ` K ) |
|
| 4 | paddasslem.p | |- .+ = ( +P ` K ) |
|
| 5 | simpr2r | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> r e. ( Y .+ Z ) ) |
|
| 6 | simpl1 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> K e. HL ) |
|
| 7 | 6 | hllatd | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> K e. Lat ) |
| 8 | simpl22 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> Y C_ A ) |
|
| 9 | simpl23 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> Z C_ A ) |
|
| 10 | simpl3 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( Y =/= (/) /\ Z =/= (/) ) ) |
|
| 11 | 1 2 3 4 | elpaddn0 | |- ( ( ( K e. Lat /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) -> ( r e. ( Y .+ Z ) <-> ( r e. A /\ E. y e. Y E. z e. Z r .<_ ( y .\/ z ) ) ) ) |
| 12 | 7 8 9 10 11 | syl31anc | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( r e. ( Y .+ Z ) <-> ( r e. A /\ E. y e. Y E. z e. Z r .<_ ( y .\/ z ) ) ) ) |
| 13 | 5 12 | mpbid | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( r e. A /\ E. y e. Y E. z e. Z r .<_ ( y .\/ z ) ) ) |
| 14 | simp11 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> K e. HL ) |
|
| 15 | simp12 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> ( X C_ A /\ Y C_ A /\ Z C_ A ) ) |
|
| 16 | simp21 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> p e. A ) |
|
| 17 | simp31 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> r e. A ) |
|
| 18 | 16 17 | jca | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> ( p e. A /\ r e. A ) ) |
| 19 | simp22l | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> x e. X ) |
|
| 20 | simp32l | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> y e. Y ) |
|
| 21 | simp32r | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> z e. Z ) |
|
| 22 | 19 20 21 | 3jca | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> ( x e. X /\ y e. Y /\ z e. Z ) ) |
| 23 | simp23 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> p .<_ ( x .\/ r ) ) |
|
| 24 | simp33 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> r .<_ ( y .\/ z ) ) |
|
| 25 | 23 24 | jca | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) |
| 26 | 1 2 3 4 | paddasslem14 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ r e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) |
| 27 | 14 15 18 22 25 26 | syl32anc | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) |
| 28 | 27 | 3expia | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) |
| 29 | 28 | 3expd | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( r e. A -> ( ( y e. Y /\ z e. Z ) -> ( r .<_ ( y .\/ z ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) ) ) |
| 30 | 29 | imp | |- ( ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) /\ r e. A ) -> ( ( y e. Y /\ z e. Z ) -> ( r .<_ ( y .\/ z ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) ) |
| 31 | 30 | rexlimdvv | |- ( ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) /\ r e. A ) -> ( E. y e. Y E. z e. Z r .<_ ( y .\/ z ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) |
| 32 | 31 | expimpd | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( ( r e. A /\ E. y e. Y E. z e. Z r .<_ ( y .\/ z ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) |
| 33 | 13 32 | mpd | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) |