This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projective subspace sum is idempotent. Part of Lemma 16.2 of MaedaMaeda p. 68. (Contributed by NM, 13-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddidm.s | |- S = ( PSubSp ` K ) |
|
| paddidm.p | |- .+ = ( +P ` K ) |
||
| Assertion | paddidm | |- ( ( K e. B /\ X e. S ) -> ( X .+ X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddidm.s | |- S = ( PSubSp ` K ) |
|
| 2 | paddidm.p | |- .+ = ( +P ` K ) |
|
| 3 | simpl | |- ( ( K e. B /\ X e. S ) -> K e. B ) |
|
| 4 | eqid | |- ( Atoms ` K ) = ( Atoms ` K ) |
|
| 5 | 4 1 | psubssat | |- ( ( K e. B /\ X e. S ) -> X C_ ( Atoms ` K ) ) |
| 6 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 7 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 8 | 6 7 4 2 | elpadd | |- ( ( K e. B /\ X C_ ( Atoms ` K ) /\ X C_ ( Atoms ` K ) ) -> ( p e. ( X .+ X ) <-> ( ( p e. X \/ p e. X ) \/ ( p e. ( Atoms ` K ) /\ E. q e. X E. r e. X p ( le ` K ) ( q ( join ` K ) r ) ) ) ) ) |
| 9 | 3 5 5 8 | syl3anc | |- ( ( K e. B /\ X e. S ) -> ( p e. ( X .+ X ) <-> ( ( p e. X \/ p e. X ) \/ ( p e. ( Atoms ` K ) /\ E. q e. X E. r e. X p ( le ` K ) ( q ( join ` K ) r ) ) ) ) ) |
| 10 | pm1.2 | |- ( ( p e. X \/ p e. X ) -> p e. X ) |
|
| 11 | 10 | a1i | |- ( ( K e. B /\ X e. S ) -> ( ( p e. X \/ p e. X ) -> p e. X ) ) |
| 12 | 6 7 4 1 | psubspi | |- ( ( ( K e. B /\ X e. S /\ p e. ( Atoms ` K ) ) /\ E. q e. X E. r e. X p ( le ` K ) ( q ( join ` K ) r ) ) -> p e. X ) |
| 13 | 12 | 3exp1 | |- ( K e. B -> ( X e. S -> ( p e. ( Atoms ` K ) -> ( E. q e. X E. r e. X p ( le ` K ) ( q ( join ` K ) r ) -> p e. X ) ) ) ) |
| 14 | 13 | imp4b | |- ( ( K e. B /\ X e. S ) -> ( ( p e. ( Atoms ` K ) /\ E. q e. X E. r e. X p ( le ` K ) ( q ( join ` K ) r ) ) -> p e. X ) ) |
| 15 | 11 14 | jaod | |- ( ( K e. B /\ X e. S ) -> ( ( ( p e. X \/ p e. X ) \/ ( p e. ( Atoms ` K ) /\ E. q e. X E. r e. X p ( le ` K ) ( q ( join ` K ) r ) ) ) -> p e. X ) ) |
| 16 | 9 15 | sylbid | |- ( ( K e. B /\ X e. S ) -> ( p e. ( X .+ X ) -> p e. X ) ) |
| 17 | 16 | ssrdv | |- ( ( K e. B /\ X e. S ) -> ( X .+ X ) C_ X ) |
| 18 | 4 2 | sspadd1 | |- ( ( K e. B /\ X C_ ( Atoms ` K ) /\ X C_ ( Atoms ` K ) ) -> X C_ ( X .+ X ) ) |
| 19 | 3 5 5 18 | syl3anc | |- ( ( K e. B /\ X e. S ) -> X C_ ( X .+ X ) ) |
| 20 | 17 19 | eqssd | |- ( ( K e. B /\ X e. S ) -> ( X .+ X ) = X ) |