This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolss . (Contributed by Mario Carneiro, 16-Mar-2014) (Proof shortened by AV, 17-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolss.1 | |- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
|
| ovolss.2 | |- N = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
||
| Assertion | ovolsslem | |- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolss.1 | |- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
|
| 2 | ovolss.2 | |- N = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
|
| 3 | sstr2 | |- ( A C_ B -> ( B C_ U. ran ( (,) o. f ) -> A C_ U. ran ( (,) o. f ) ) ) |
|
| 4 | 3 | ad2antrr | |- ( ( ( A C_ B /\ B C_ RR ) /\ y e. RR* ) -> ( B C_ U. ran ( (,) o. f ) -> A C_ U. ran ( (,) o. f ) ) ) |
| 5 | 4 | anim1d | |- ( ( ( A C_ B /\ B C_ RR ) /\ y e. RR* ) -> ( ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) -> ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
| 6 | 5 | reximdv | |- ( ( ( A C_ B /\ B C_ RR ) /\ y e. RR* ) -> ( E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
| 7 | 6 | ss2rabdv | |- ( ( A C_ B /\ B C_ RR ) -> { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } C_ { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } ) |
| 8 | 7 2 1 | 3sstr4g | |- ( ( A C_ B /\ B C_ RR ) -> N C_ M ) |
| 9 | sstr | |- ( ( A C_ B /\ B C_ RR ) -> A C_ RR ) |
|
| 10 | 1 | ovolval | |- ( A C_ RR -> ( vol* ` A ) = inf ( M , RR* , < ) ) |
| 11 | 10 | adantr | |- ( ( A C_ RR /\ x e. M ) -> ( vol* ` A ) = inf ( M , RR* , < ) ) |
| 12 | 1 | ssrab3 | |- M C_ RR* |
| 13 | infxrlb | |- ( ( M C_ RR* /\ x e. M ) -> inf ( M , RR* , < ) <_ x ) |
|
| 14 | 12 13 | mpan | |- ( x e. M -> inf ( M , RR* , < ) <_ x ) |
| 15 | 14 | adantl | |- ( ( A C_ RR /\ x e. M ) -> inf ( M , RR* , < ) <_ x ) |
| 16 | 11 15 | eqbrtrd | |- ( ( A C_ RR /\ x e. M ) -> ( vol* ` A ) <_ x ) |
| 17 | 16 | ralrimiva | |- ( A C_ RR -> A. x e. M ( vol* ` A ) <_ x ) |
| 18 | 9 17 | syl | |- ( ( A C_ B /\ B C_ RR ) -> A. x e. M ( vol* ` A ) <_ x ) |
| 19 | ssralv | |- ( N C_ M -> ( A. x e. M ( vol* ` A ) <_ x -> A. x e. N ( vol* ` A ) <_ x ) ) |
|
| 20 | 8 18 19 | sylc | |- ( ( A C_ B /\ B C_ RR ) -> A. x e. N ( vol* ` A ) <_ x ) |
| 21 | 2 | ssrab3 | |- N C_ RR* |
| 22 | ovolcl | |- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
|
| 23 | 9 22 | syl | |- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) e. RR* ) |
| 24 | infxrgelb | |- ( ( N C_ RR* /\ ( vol* ` A ) e. RR* ) -> ( ( vol* ` A ) <_ inf ( N , RR* , < ) <-> A. x e. N ( vol* ` A ) <_ x ) ) |
|
| 25 | 21 23 24 | sylancr | |- ( ( A C_ B /\ B C_ RR ) -> ( ( vol* ` A ) <_ inf ( N , RR* , < ) <-> A. x e. N ( vol* ` A ) <_ x ) ) |
| 26 | 20 25 | mpbird | |- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) <_ inf ( N , RR* , < ) ) |
| 27 | 2 | ovolval | |- ( B C_ RR -> ( vol* ` B ) = inf ( N , RR* , < ) ) |
| 28 | 27 | adantl | |- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` B ) = inf ( N , RR* , < ) ) |
| 29 | 26 28 | breqtrrd | |- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |